Закономерности развития технических систем. Или другая трактовка данного закона: закон перехода " моно - би - поли "

Понятие технических систем, законы строения и развития технических систем

Как отмечалось в параграфе 1.2, понятия «технология» и «техника» не тождественны: техника является только одним из средств реализации технологии. Следуя той же логике, необходимо различать технологические и технические системы, а, значит, и знать отличия закономерностей их формирования и развития.

Техническая система включает в себя пространственную совокупность взаимосвязанных элементов, образующих нечто целое, предназначенное для выполнения одной или нескольких


функций, и необходимых или непосредственно человеку, или другим техническим устройствам.

Очевидно, что техническая система является материальной системой. Ее можно изучать, совершенствовать, целенаправленно видоизменяя составные элементы. Важнейшими составными элементами любой технической системы являются: рабочий орган (исполнительный механизм), источник энергии (привод), трансмиссия (передаточный механизм) и орган управления.

Очевидно также, что выполняющие одну и ту же функцию технические системы могут, тем не менее, отличаться друг от друга принципом своего действия, а, значит, и составляющими элементами.

Идея потребности в технической системе реализуется через принцип действия, обеспечивающий возможность ее функционирования с помощью соответствующего рабочего органа - первичного элемента любой системы, под который подбираются все остальные элементы. В свою очередь подходящий принцип действия выбирается из известных законов природы.

Таким образом, целенаправленное создание новой технической системы проходит следующие этапы: потребность человека (общества) - возникновение идеи - поиск соответствующих знаний - определение принципа действия системы - выбор рабочего органа - подбор остальных элементов системы.

Система будет работоспособной, если минимально работоспособными будут все четыре органа. Повышение работоспособности (функциональности) системы происходит за счет совершенствования всех ее органов. Это совершенствование происходит неравномерно - то один, то другой элемент в своем развитии вырывается вперед и вынуждает совершенствоваться и остальные. Но наступает период, когда из резервов всех элементов выжато все возможное и дальше улучшать нечего и некуда - система исчерпала свои возможности. Она или умирает (например, гусиное перо в качестве пишущего средства, факел), или останавливается в своем развитии (карандаш, лампа накаливания), или ее рабочий орган входит в новую систему (грифель обычного карандаша - в цанговый карандаш).

Таким образом, историю развития технической системы можно представить в виде схемы, состоящей из длинной цепочки сменяющих друг друга систем с различными принципами действия, подсистемами, надсистемами, связями между ними. Такую схему называют «системный оператор», так как она позволяет ориентироваться во всей генетике системы, или «схемой многоэкранного мышления».


Чем больше «экранов» человеческий разум может увидеть, чем больше связей установить и учесть, тем легче принять объективность законов развития технических систем.

В настоящее время сформулированы следующие законы строения и развития техники:

Законы строения:

1. Закон соответствия между функцией и структурой.

Суть данного закона состоит в том, что в правильно спроектированной технической системе каждый элемент - от сложных узлов до простых деталей имеет вполне определенную функцию (назначение) по обеспечению работы этой системы. Таким образом, у правильно спроектированных технических систем нет лишних деталей.

Использование закона максимально результативно при поиске более рациональных и эффективных конструкторско-тех-нологических решений новых технических систем.

2. Закон корреляции параметров однородного ряда техни
ческих систем.

К однородному ряду относятся такие технические системы, которые имеют одинаковые функцию, структуру, условия работы (в смысле взаимодействия с предметами труда и окружающей средой) и отличаются только значениями главного параметра (например, размера).

3. Закон симметрии технических систем.
Техническая система, испытывающая воздействие среды в

виде потоков вещества, энергии или информации, должна иметь определенный вид симметрии.

4. Закон гомологических рядов.

Закон гомологических рядов (от гр. homologos - соответственный, подобный) в наследственной изменчивости был сформулирован Н.И. Вавиловым, установившим параллелизм в изменчивости родственных групп растений. Позже было открыто, что в основе данного явления лежит гомология генов (их одинаковое молекулярное строение и сходство в порядке расположения в хромосомах) у родственных видов.

При генетическом анализе искусственных объектов их можно сравнить с объектами живой природы, каждый из которых тоже достиг очень высокого уровня развития и по-своему совершенен. Принципиальная разница между ними в том, что эволюция объектов живой природы - от простейшей амебы до сложнейших белковых организмов - происходила в естественных условиях их взаимодействия с внешней средой как борьба за выживание. И каждый этап этого совершенствования - тоже разрешение противоречия, но возникшего, например, в свя-


Зи с резким изменением температуры или исчезновением вида, который служил традиционной пищей другого, и т.д.

Таким образом, закон гомологических рядов позволяет довольно точно прогнозировать появление новых технических решений.

Законы развития:

1. Закон прогрессивной эволюции техники.

Действие закона прогрессивной эволюции в мире техники аналогично действию закона естественного отбора Дарвина в живой природе. Его суть состоит в том, что в техническом объекте с одинаковой функцией каждый переход от поколения к поколению вызван устранением возникшего главного дефекта (дефектов), связанным с улучшением какого-либо критерия (показателя) развития при наличии определенных технико-экономических условий. Если же рассматривать все переходы от поколения к поколению, т.е. всю историю конструктивной эволюции определенного класса техники, то можно наблюдать закономерности исчерпания возможностей конструктор-ско-технологических решений на трех уровнях.

На первом уровне улучшаются отдельные параметры используемого технического решения. Когда изменение параметров уже не дает существенного эффекта, осуществляются изменения на втором уровне - путем перехода к более эффективному техническому решению, но без изменения физического принципа действия. Циклы на первом и втором уровнях совершаются до тех пор, пока в рамках используемого принципа действия не исчерпываются возможные новые технические решения, обеспечивающие улучшение интересующих показателей. После этого происходит революционное изменение на третьем уровне - переход на новый, более прогрессивный принцип действия и т.д.

В законе прогрессивной эволюции исчерпание функциональности и эффективности конструкции не просто формальность: пока не будут достигнуты оптимальные параметры, не может произойти переход к новому техническому решению или к новому принципу действия.

Закономерность исчерпания действует лишь при определенных условиях: если при наличии необходимого научно-технического потенциала переход к новому техническому решению или физическому принципу действия обеспечивает получение дополнительной эффективности, превышающей затраты, то может произойти скачок к новому техническому решению или физическому принципу действия без исчерпания возможностей предыдущих.


2. Закон стадийного развития технических систем. Любая техническая система в своем развитии проходит четыре основные стадии:

1) техническая система реализует только функцию обработки предмета труда (технологическая функция);

2) наряду с технологической, техническая система реализует функцию обеспечения процесса энергией (энергетическая функция);

3) техническая система помимо технологической и энергетической реализует функцию управления процессом;

4) техническая система помимо всех предыдущих функций реализует еще функцию планирования, исключая человека из технологического процесса.

Переход к очередной стадии происходит при исчерпании природных возможностей человека в улучшении показателей выполнения фундаментальной функции - удовлетворение потребностей общества. Пример стадийного развития технических систем приведен в табл. 5.1.

Таблица 5.1

Стадийное развитие технических систем

Основная функция технической системы Технологическая функция (ТФ) ТФ + энергетическая функция (ЭФ) ТФ + ЭФ + + функция управления (ФУ) ТФ + ЭФ + + ФУ + функция планирования
Размалывание зерна Каменные жернова с ручным приводом Каменные жернова с приводом от водяного колеса или паровой машины Мельница с системой автоматического управления (САУ) Мельница с САУ, получающая задание от автоматизированной системы планирования работ
Передвижение по водной поверхности Корабль с веслами (мускульный привод) Корабль с парусом (перемещение энергией ветра) Пароход (перемещение энергией пара с возможностью управления) Современный корабль с компьютеризированной системой навигации

3. Закон расширения множества потребностей-функций. При наличии нужного потенциала и социально-экономической целесообразности возникшая новая потребность удовлетворяется с помощью впервые созданных технических систем; при этом возникает новая функция, которая существует до тех пор, пока ее реализация будет обеспечивать улучшение жизни лю-



4. Закон возрастания разнообразия технических систем.

Разнообразие технических систем в мире, стране или отрасли, а также отдельного класса технических систем, имеющих одинаковую функцию, в связи с необходимостью наиболее полного удовлетворения человеческих потребностей, обеспечения высоких темпов производительности труда и улучшения других критериев прогрессивного развития техники со временем монотонно и ускоренно возрастает. Число новых технических систем за промежуток времени t (N (t)) увеличивается по экспоненциальному закону

5. Закон возрастания сложности технических объектов.

Сложность технических объектов с одинаковой функцией в силу действия факторов стадийного развития техники и прогрессивной конструктивной эволюции технических систем от поколения к поколению монотонно и ускоренно возрастает.

Подводя итог вышеизложенному, сформулируем постулат теории решения изобретательских задач: технические системы развиваются по объективно существующим законам: эти законы познаваемы, их можно выявить и использовать для сознательного развития технических систем, которое происходит в общем для всех систем направлении: повышения уровня их идеальности.

Одной из предпосылок ТРИЗ является то, что существуют объективные законы развития и функционирования систем, опираясь на которые можно строить изобретательские решения. Другими словами, многие технические, производственные, экономические и социальные системы развиваются по одним и тем же правилам и принципам. Г. С. Альтшуллер обнаружил их, изучив патентный фонд и проанализировав пути развития и усовершенствования техники в течение долгого времени. Результаты, опубликованные в книгах ««Линии жизни» технических систем» и «О законах развития технических систем», позже объединенные в работе «Творчество как точная наука», стали базисом для Теории развития технических систем (ТРТС).

В данном уроке мы предлагаем вам познакомиться с этими законами, подкрепленными примерами. В программе обучения ТРИЗ они занимают главное место, поскольку раскрываются и детализируются в правилах их применения, в стандартах, принципах разрешения противоречий, вепольном анализе и АРИЗе.

Терминология и краткое введение

Закон развития технической системы (ЗРТС) - это существенное, устойчивое, повторяющееся отношение между элементами внутри системы и с внешней средой в процессе прогрессивного развития, перехода системы от одного состояния к другому с целью увеличения ее полезной функциональности.

Г. С. Альтшуллер открытые законы разделил на три раздела «Статику», «Кинематику», «Динамику». Названия эти условны и не имеют прямого отношения к физике. Но можно проследить связь этих групп с моделью «начала жизни-развития-смерти» в соответствии с законом S-образного развития технических систем, который автор предложил для полной картины эволюции процессов в технике. Она изображается логистической кривой, которая показывает меняющиеся со временем темпы развития. Этапов три:

1. «Детство». Конкретно в технике это длительный процесс проектирования системы, ее доработки, изготовления опытного образца, подготовки к серийному выпуску. В глобальном понимании этап связан с законами «Статики» - группой, объединенной критериями жизнеспособности возникающих технических систем (ТС). Говоря простым языком, благодаря этим законам можно дать ответы на два вопроса: Будет ли жить и функционировать создаваемая система? Что нужно сделать для того, чтобы она жила и функционировала?

2. «Расцвет». Этап бурного совершенствования системы, ее становления в качестве мощной и производительной единицы. Он связан со следующей группой законов - «Кинематикой», которая описывает направления развития технических систем вне зависимости от конкретных технических и физических механизмов. В буквальном понимании это означает те изменения, которые должны произойти в системе, чтобы она отвечала возрастающим к ней требованиям.

3. «Старость». С какого-то момента развитие системы замедляется, а позже прекращается вовсе. Это обусловлено законами «Динамики», характеризующими развитие ТС в условиях действия конкретных технических и физических факторов. «Динамика» противоположна «Кинематике» - законы этой группы определяют лишь возможные изменения, которые могут быть совершены в данных условиях. Когда возможности совершенствования исчерпаны, на смену старой системе приходит новая, и весь цикл повторяется.

Законы первых двух групп - «Статики» и «Кинематики» - универсальны по своему характеру. Они действуют в любую эпоху и применимы не только к техническим системам, но и к биологическим, социальным и т. д. «Динамика» же, по словам Альтшуллера, говорит об основных тенденциях функционирования систем именно в наше время.

Как пример действия комплекса этих законов в технике можно вспомнить развитие такой технической системы, как весельный флот. Она прошла становление от маленьких лодок с парой весел до крупных боевых кораблей, где сотни весел располагались в несколько рядов, уступив в результате место парусникам. В социальном и историческом плане примером S-образной системы может служить зарождение, процветание и упадок афинской демократии.

Статика

Законы «Статики» в ТРИЗ определяют начальную стадию функционирования технической системы, начало ее «жизни», определяя необходимые для этого условия. Сама категория «система» говорит нам о целом, составленном из частей. Техническая система, как и любая другая, начинает свою жизнь в результате синтеза отдельных компонентов. Но не всякое такое объединение дает жизнеспособную ТС. Законы группы «Статика» как раз и показывают, какие обязательные условия должны выполняться для успешной работоспособности системы.

Закон 1. Закон полноты частей системы. Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы.

Основных частей четыре: двигатель, трансмиссия, рабочий орган и орган управления. Для обеспечения жизнеспособности системы нужны не только эти части, но и их пригодность к выполнению функций ТС. Другими словами, эти составляющие должны быть работоспособными не только по отдельности, но и в системе. Классический пример - двигатель внутреннего сгорания, который работает сам по себе, функционирует в такой ТС как легковой автомобиль, но не пригоден для применения в подводной лодке.

Из закона полноты частей системы следует вывод: чтобы система была управляемой, необходимо, чтобы хотя бы одна ее часть была управляемой. Управляемость означает способность менять свойства в зависимости от предполагаемых заданий. Это следствие хорошо иллюстрирует пример из книги Ю. П. Саламатова «Система законов развития техники»: воздушный шар, управлять которым можно с помощью клапана и балласта.

Похожий закон был сформулирован в 1840 г. Ю. фон Либихом и для биологических систем.

Закон 2. Закон «энергетической проводимости» системы. Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.

Любая техническая система является преобразователем энергии. Отсюда очевидная необходимость передачи энергии от двигателя через трансмиссию к рабочему органу. Если какая-то часть ТС не будет получать энергии, то и вся система не будет работать. Главным условием эффективности технической системы с точки зрения энергопроводимости является равенство способностей частей системы по принятию и передаче энергии.

Из закона «энергетической проводимости» следует вывод: чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления. Этот закон статики также является основой определения 3 правил энергопроводимости системы:

  1. Если элементы при взаимодействии друг с другом образуют систему, проводящую энергию с полезной функцией, то для повышения ее работоспособности в местах контакта должны быть вещества с близкими или одинаковыми уровнями развития.
  2. Если элементы системы при взаимодействии образуют энергопроводящую систему с вредной функцией, то для ее разрушения в местах контактирования элементов должны быть вещества с различными или противоположными уровнями развития.
  3. Если элементы при взаимодействии друг с другом образуют энергопроводящую систему с вредной и полезной функцией, то в местах контактирования элементов должны быть вещества, уровень развития которых и физико-химические свойства изменяются под воздействием какого-либо управляемого вещества или поля.

Закон 3. Закон согласования ритмики частей системы. Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.

Теоретик ТРИЗ А. В. Тригуб уверен, что для устранения вредных явлений или усиления полезных свойств технической системы, необходимо согласовать или рассогласовать частоты колебаний всех подсистем в технической системе и внешних системах. Попросту говоря, для жизнеспособности системы важно, чтобы отдельные части не только работали вместе, но и не мешали друг другу выполнять полезную функцию.

Этот закон прослеживается на примере истории создания установки для дробления камней в почках. Данный аппарат дробит камни целенаправленным лучом ультразвука, чтобы в дальнейшем они выводились натуральным путем. Но изначально для разрушения камня требовалась большая мощность ультразвука, что поражало не только их, но и окружающие ткани. Решение пришло после того, как была согласована частота ультразвука с частотой колебания камней. Это вызывало резонанс, который и разрушал камни, благодаря чему мощность луча удалось уменьшить.

Кинематика

Группа законов ТРИЗ «Кинематика» имеет дело с уже образованными системами, которые проходят этап своего становления. Условие, как было сказано выше, кроется в том, что эти законы определяют развитие ТС, независимо от конкретных технических и физических факторов, его обусловливающих.

Закон 4. Закон увеличения степени идеальности системы. Развитие всех систем идет в направлении увеличения степени идеальности.

В классическом понимании идеальная система - это система, вес, объем, площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря - это когда системы нет, а функция ее сохраняется и выполняется. Все ТС стремятся к идеальности, но идеальных очень мало. Образцом может служить сплав леса плотами, когда корабль для транспортировки не требуется, а функция доставки выполняется.

На практике можно найти множество примеров подтверждения данного закона. Предельный случай идеализации техники заключается в ее уменьшении (вплоть до исчезновения) при одновременном увеличении количества выполняемых ею функций. Например, первые поезда были больше чем сейчас, а пассажиров и грузов перевозили меньше. В дальнейшем габариты уменьшились, усилилась мощность, благодаря чему стала возможной перевозка больших объемов грузов и увеличение пассажиропотока, что привело и к снижению стоимости самой транспортировки.

Закон 5. Закон неравномерности развития частей системы. Развитие частей системы идет неравномерно; чем сложнее система, тем неравномернее развитие ее частей.

Неравномерность развития частей системы является причиной возникновения технических и физических противоречий, и, следовательно, изобретательских задач. Следствием данного закона является то, что рано или поздно изменение одной составляющей ТС спровоцирует цепную реакцию технических решений, которые приведут к изменению и оставшихся частей. Закон находит свое подтверждение в термодинамике. Так, в соответствии с принципом Онсагера: движущая сила любого процесса - это появление неоднородности в системе. Значительно раньше, чем в ТРИЗ, этот закон был описан в биологии: «В ходе прогрессивной эволюции возрастает взаимное приспособление органов, происходит координация изменений частей организма и идет аккумуляция корреляций общего значения».

Отличной иллюстрацией справедливости закона служит развитие автомобильной техники. Первые двигатели обеспечивали относительно небольшую по сегодняшним меркам скорость в 15-20 км/час. Установка двигателей большей мощности увеличила скорость, что со временем стало причиной замены колес на более широкие, изготовления кузова из более прочных материалов и т.д.

Закон 6. Закон опережающего развития рабочего органа. Желательно, чтобы рабочий орган опережал в своем развитии остальные части системы, то есть обладал большей степенью динамизации по веществу, энергии или организации.

Некоторые исследователи выделяют этот закон как отдельный, но многие труды выводят его в комплексе с законом неравномерности развития частей системы. Такой подход нам кажется более органичным, и мы выносим индивидуальный блок для данного закона лишь для большей структурированности и понятности.

Значение этого закона в том, что он указывает на распространенную ошибку, когда с целью увеличения полезности изобретения развивается не рабочий орган, а любой другой, например, управленческий (трансмиссия). Конкретный случай - чтобы создать многофункциональный игровой смартфон, нужно не просто сделать его удобным для держания в руке и оснастить большим дисплеем, а, в первую очередь, позаботиться о мощном процессоре.

Закон 7. Закон динамизации. Жесткие системы для повышения эффективности должны становиться динамичными, то есть переходить к более гибкой, быстро меняющейся структуре и к режиму работы, подстраивающемуся под изменения внешней среды.

Данный закон является универсальным и находит свое отображение во многих сферах. Степенью динамизации - способностью системы приспосабливаться к внешней среде - обладают не только технические системы. Когда-то такую адаптацию прошли биологические виды, вышедшие из воды на сушу. Изменяются и социальные системы: все больше компаний практикуют вместо офисной работы удаленную, а многие работники отдают предпочтение фрилансу.

Примеров из техники, подтверждающих данный закон, также множество. Свой облик за пару десятилетий поменяли мобильные телефоны. Причем изменения были не только количественными (уменьшение в размерах), но и качественными (увеличение функиональности, вплоть до перехода в надсистему - планшетофоны). Первые бритвенные станки «Gilette» имели неподвижную головку, которая позже стала более удобной движущейся. Еще один пример: в 30-е гг. в СССР выпускались быстрые танки БТ-5, которые по бездорожью двигались на гусеницах, а выехав на дорогу, сбрасывали их и шли на колесах.

Закон 8. Закон перехода в надсистему. Развитие системы, достигшей своего предела, может быть продолжено на уровне надсистемы.

Когда динамизация системы невозможна, другими словами, когда ТС полностью исчерпала свои возможности и дальнейших путей ее развития нет, система переходит в надсистему (НС). В ней она работает в качестве одной из частей; при этом дальнейшее развитие идет уже на уровне надсистемы. Переход происходит не всегда и ТС может оказаться мертвой, как, например, произошло с каменными орудиями труда первых людей. Система может не переходить в НС, а оставаться в состоянии, когда не может быть существенно усовершенствована, но сохранять жизнеспособность в силу необходимости этого людям. Примером такой технической системы служит велосипед.

Вариантом перехода системы в надсистему может быть создание би- и полисистем. Его еще называют законом перехода «моно - би - поли». Такие системы более надежны и функциональны, благодаря приобретаемым в результате синтеза качествам. После прохождения этапов би- и поли- наступает свертывание - либо ликвидация системы (каменный топор), поскольку она свое уже отслужила, либо переход ее в надсистему. Классический пример проявления: карандаш (моносистема) - карандаш с ластиком на конце (бисистема) - разноцветные карандаши (полисистема) - карандаш с циркулем или ручка (свертывание). Или бритва: с одним лезвием - с двумя - с тремя и более - бритва с вибрацией.

Этот закон является не только общим законом развития систем, схемой, по которой развивается все, но и законом природы, ведь симбиоз живых организмов с целью выживания известен с незапамятных времен. Как подтверждение: лишайники (симбиоз гриба и водорослей), членистоногие (рак-отшельник и актинии), люди (бактерии в желудке).

Динамика

«Динамика» объединяет законы развития ТС характерные для нашего времени и определяет возможные изменения в них в научно-технических условиях современности.

Закон 9. Закон перехода с макроуровня на микроуровень. Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.

Суть заключается в том, что любая ТС для развития своего полезного функционала стремится перейти с макроуровня на микроуровень. Другими словами, в системах соблюдается тенденция перехода функции рабочего органа от колес, шестерней, валов и т. д. к молекулам, атомам, ионам, которые легко управляются полями. Это одна из главных тенденций развития всех современных технических систем.

Понятия «макроуровень» и «микроуровень» являются в данном отношении скорее условными и призваны показать уровни мышления человека, где первый уровень - что-то физически соизмеримое, а второй - понимаемое. В жизни любой ТС наступает момент, когда дальнейшее экстенсивное (увеличение полезной функции за счет изменений на макроуровне) развитие невозможно. Дальше систему можно развивать только интенсивно, за счет повышения организованности все более низких системных уровней вещества.

В технике переход между макро- и микроуровнями хорошо демонстрирует эволюция строительного материала - кирпича. Сначала это была просто организация формы глины для удобства. Но однажды человек забыл кирпич на пару часов на солнце, а когда вспомнил о нем - тот затвердел, что сделало его более надежным и практичным. Но со временем было замечено, что такой материал плохо держит тепло. Было совершено новое изобретение - теперь в кирпиче оставляли большое количество воздушных капилляров - микропустот, что существенно понизило его теплопроводность.

Закон 10. Закон повышения степени вепольности. Развитие технических систем идет в направлении увеличения степени вепольности.

Г. С. Альтшуллер писал: «Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении перехода от механических полей к электромагнитным; увеличения степени дисперсности веществ, числа связей между элементами и отзывчивости системы».

Веполь - (вещество+поле) - модель взаимодействия в минимальной технической системе. Это понятие абстрактное, применяемое в ТРИЗ для описания некоторого вида отношений. Под вепольностью стоит понимать управляемость. Дословно закон описывает вепольность как последовательность изменения структуры и элементов веполей с целью получения более управляемых технических систем, т.е. систем более идеальных. При этом в процессе изменения необходимо осуществлять согласование веществ, полей и структуры. Примером может служить диффузионная сварка и лазер для резки различных материалов.

В заключение отметим, что здесь собраны лишь описанные в литературе законы, в то время как теоретики ТРИЗ говорят о существовании и других, открыть и сформулировать которые еще предстоит.

Проверьте свои знания

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.

Введение

1. Понятия и определения

2. Закономерности техники

3. Основные законы развития технических систем

3.1 Закон прогрессивной эволюции техники

3.2 Закон полноты частей системы

3.3 Закон расширения множества потребностей-функций

3.4 Закон соответствия между функцией и структурой

4. Вытеснение человека из технических систем

4.1 Закон стадийного развития техники

4.2 Роботизация и законы робототехники

5. Прогнозирование развития технических систем

Список литературы

Введение

Развитие человечества, уже много столетий связано с развитием техники. На протяжении многих лет люди улучшали и модернизировали существующую технику и изобретали новую. Техника же помогала люди развиваться самим, улучшать свои навыки и способности.

Как и весь наш мир техника существует и развивается на основе законов. Разработка законов развития технических систем велась уже достаточно давно. Первую работу по законам развития техники написал Георг Гегель в параграфе «Средство» работы «Наука логики». «Техника механическая и химическая потому и служит целям человека, что ее характер (суть) состоит в определении ее внешними условиями (законами природы)». В 1843 году В. Шульц описал прототип закона полноты частей системы. Он писал, что «можно провести границу между орудием и машиной: заступ, молот, долото и т.д., системы рычагов и винтов, для которых, как бы искусно они ни были сделаны, движущей силой служит человек … все это подходит под понятие орудия; между тем плуг с движущей его силой животных, ветряные мельницы следует причислить к машинам ». Чуть позже некоторые законы развития техники были описаны К. Марксом и Ф. Энгельсом. К. Маркс описал эти законы в разделе «Развитие машин», «…различие между орудием и машиной устанавливают в том, что при орудии движущей силой служит человек, а движущая сила машины – сила природы, отличная от человеческой силы, например животное, вода, ветер и т.д.». Некоторые дополнительные материалы можно найти в работах Ф. Энгельса по истории развития военной техники и ведения войн. Это работы 1860–1861 гг., в частности: «О нарезной пушке», «История винтовки», «Оборона Британии», «Французская легкая пехота» и др. Определенным вкладом в понимании техники и ее законов было создание «философии техники». Этот термин ввел немецкий ученый Эрнест Капп. В 1877 году он выпустил книгу «Основные линии философии техники». Основное развитие этого течения проходило в начале XX века. В основном, развитием «философии техники » занимались немецкие ученые Ф. Дессауер, М. Эйт, М. Шнейдер и др. В России эту тематику разрабатывал П.К. Энгельмейер. В 1911 году он выпустил книгу «Философия техники». Все эти работы обсуждали теоретические и социальные проблемы техники и технического прогресса. Вопросами истории техники, классификации и определения понятий техники занимались многие ученые в различных странах К. Туссман и И. Мюллер (в Германии), В.И. Свидерский, А.А. Зворыкин, И.Я. Конфедератов, С.В. Шухардин (в России) и др. В 1962 году был выпущен фундаментальный труд по истории техники.

Тем не менее, наука о законах техники только начинает формироваться. И первый этап, естественно, связан с формулированием и обоснованием гипотез о законах строения и развития техники. Сегодня нет пока достаточно обоснованных общепризнанных отдельных законов техники и нет еще даже в гипотезах полной замкнутой системы их системы. Создание такой системы, как и обоснование отдельных законов – одно из важнейших актуальных современных направлений фундаментальных исследований, относящихся к технознанию и общей теории проектирования. Это направление ждет своих энтузиастов-исследователей.

Однако, в отличие от недавнего времени сегодня уже имеются теоретические и методические разработки по законам и закономерностям техники, которые представляют большой интерес для практического использования. Законы техники, а также более частные и локальные закономерности могут иметь многоплановое приложение в инженерном творчестве. Во-первых, на основе законов и закономерностей техники могут быть разработаны наиболее эффективные методология и методы инженерного творчества. Во-вторых, привязка законов и закономерностей к конкретному классу технического объекта позволяет определить наиболее структурные свойства, облик и характеристики технического объекта в следующих поколениях.

В данной работе будут рассмотрены наиболее основные законы, нашедшие свое подтверждение на практике, на основание которых можно анализировать существующие технические объекты и со степенью вероятности проектировать дальнейшее развитие отдельных машин и механизмов.

Прежде чем перейти непосредственно к самим законам, нужно дать точное определение техническим объектам, описывающимся в этих законах, и дать определения закону, как понятию.

1. Понятия и определения

Техника(греческое «техне» – ремесло, искусство, мастерство).

Определения техники можно объединить в три основные группы. Их можно представить следующим образом: техника как искусственная материальная система; техника как средство деятельности; техника как определенные способы деятельности.

Первое значение (техника как искусственная материальная система) выделяет одну из сторон существования техники, относя ее к искусственным материальным образованиям. Но не все искусственным материальным образования являются техникой (например, продукты селекционной деятельности, которые обладают естественной структурой). Поэтому сущность техники не исчерпывается подобными определениями, так как не выделяют технику среди других искусственных материальных образований.

Второе значение также является недостаточным. Техника трактуется как средство труда, средство производства, орудия труда и т.д. Иногда техника определяется сразу и как средства, и как орудия. Но это не корректно, так как и то и другое понятия лежат в одной плоскости рассмотрения и средства труда являются более широким понятием по отношению к орудиям труда.

Третье выделенное значение – техника как определенные способы деятельности. Но этой сущности скорее соответствует понятие «технологический процесс», который, в свою очередь, является элементом технологии.

Технический объект. Понятие «технический объект» обозначает такое техническое явление, которое обладает всеми основными признаками общего класса технических образований. Отдельный технический объект является наиболее полной единичной клеткой технического мира.

Таким образом, технические объекты – это такие образования, которые, выполняя функцию средства человеческой деятельности, интегрируют в себе основные стороны деятельности человека (материальную, научную, художественную). Все другие образования существуют относительно самостоятельно и образуют смежные явления, представляющие отдельные части целого. К ним можно отнести: явления духовной жизни человека; произведения искусства; используемые неизмененные природные формы; технические системы, обладающие искусственной природой, но не выполняющие целостной социальной функции.

Наиболее детально характеристику технического объекта дал В.В. Чешев. Он пишет «…технический объект предстает в виде определенной совокупности элементов, в виде определенной вещественной структуры. …он представляет собой особую «целесообразную форму» проявления некоторого закона природы и должен описываться со стороны технических свойств, проявляемых им при практическом использовании в производственной (или какой-либо другой) сфере деятельности, а также должен быть описан со стороны своего внутреннего содержания как процесс, определяемый законом природы. Описывая техническое устройство совокупностью технических и естественных свойств, мы получаем обобщенное представление о техническом объекте».

Машина (от лат. machina – устройство искусственного происхождения (совокупность агрегатов или устройств).

Машиной называют устройство для совершения полезной работы или преобразования энергии. Машины, в которых энергия преобразуется в механическую работу, затрачиваемую на приведение в движение машин-орудий, называют машинами-двигателями.Машины, при помощи которых производится изменение формы, свойств, положения, состояния тех или иных материалов или предметов, называют машинами-орудиями (например, металлорежущий станок). «Идеальная машина» – абстрактный эталон, в реальных условиях недостигаемый и отличающийся следующими обстоятельствами:

Все части идеальной машины все время несут полезную расчетную нагрузку.

Материал «идеальной машины» работает так, что его свойства используются наилучшим образом, например, металлические части работают только на растяжение, деревянные части – только на сжатие и т.д.

Для каждой части «идеальной машины» созданы наиболее благоприятные внешние условия (температура, давление, характер движения внешней среды и т.д.).

Если «идеальная машина» передвигается, то вес, объем и площадь полезного груза совпадают или почти совпадают с весом, объемом и площадью самой машины.

«Идеальная машина» способна менять назначение (в пределах своей основной функции).

Межремонтный период частей равен сроку службы всей «идеальной машины».

Сравнивая «идеальную машину» с идеей изобретения, можно судить об уровне, вообще достигнутом в данной отрасли техники, и о качестве найденной идеи.

Механизм – это совокупность тел (обычно – деталей машин), ограничивающих свободу движения друг друга взаимным сопротивлением. Механизмы служат для передачи и преобразования движения. Как преобразователь движения механизм видоизменяет скорости, или траектории, или же и то, и другое. Он преобразует скорости, если при известной скорости одной из его частей другая его часть совершает движение, подобное движению первой, но с другой скоростью. Механизм преобразует траекторию, если, в то время как одна из его точек описывает известную траекторию, другая описывает другую заданную траекторию.

GEN3 Partners

Февраль 2003

1. ВВЕДЕНИЕ

1.1 ЦЕЛЬ РАБОТЫ

1.2 АКТУАЛЬНОСТЬ

2. ОБЩАЯ СТРУКТУРА ЗРТС

2.1 ПОНЯТИЕ ЗРТС

2.2 ПОНЯТИЕ МЕХАНИЗМА ЗРТС

2.4 СТРУКТУРА ЗРТС

3. TREND OF S-CURVE EVOLUTION

3.2.1 Первый этап

3.2.2 Переходный этап

3.2.3 Второй этап

3.2.4 Третий этап

3.2.5 Четвертый этап

3.3 СВЯЗЬ С ЗАКОНОМ НЕРАВНОМЕРНОСТИ РАЗВИТИЯ ЧАСТЕЙ ТС

3.3.1 Характеристика связи между двумя законами

3.4 ПРИМЕНЕНИЕ S-CURVE ANALYSIS ДЛЯ ОСОБЫХ ТИПОВ ПРОЕКТОВ

3.4.1 Применение S-curve analysis для прогнозных проектов

3.4.2 Применение S-curve analysis для Feasibility Study

4. ЗАКЛЮЧЕНИЕ

5. ЭВОЛЮЦИОННЫЙ АНАЛИЗ

5.1 ХАРАКТЕРИСТИКА ЗАКОНОВ РАЗВИТИЯ ТЕХНИЧЕСКИХ СИСТЕМ

5.1.1 Закон повышения идеальности

5.1.2 Закон повышения свернутости

5.1.3 Закон перехода в надсистему

5.1.4 Закон повышения эффективности использования потоков вещества, энергии и информации

5.1.5 Закон повышения согласованности

5.1.6 Закон повышения управляемости

5.1.7 Закон повышения динамичности ТС

5.1.8 Закон повышения полноты ТС

5.1.9 Закон вытеснения человека из ТС

5.2 ПОРЯДОК ПРИМЕНЕНИЯ ЗРТС

6. ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

1. ВВЕДЕНИЕ

1.1 ЦЕЛЬ РАБОТЫ

1.2 АКТУАЛЬНОСТЬ

Создателем и разработчиком базового списка ЗРТС является Генрих Альтшуллер (Альтшуллер Г.С. Творчество как точная наука. - М.: «Советское радио», 1979). В дальнейшем развитии и углублении ЗРТС в той или иной степени принимало участие большое количество специалистов по ТРИЗ, поэтому оценить вклад каждого и даже упомянуть всех не представляется возможным. Однако наибольшую роль в разработке именно данной версии, как нам кажется, сыграли Б.Злотин, А.Зусман и В.Герасимов. Очень полезными оказались обсуждения с И.Петием. Отдельно следует отметить вклад И.Гриднева - именно он предложил перейти от Закона минимальной энергопроводимости к Закону повышения проводимости, который в итоге превратился в Закон повышения эффективности использования потоков.

В настоящее время благодаря усилиям многих разработчиков ЗРТС превратились в высокоэффективный инструмент анализа. Однако не существует единого общепризнанного документа, детально описывающего все Законы и методику их применения, как они видятся на сегодняшний день. Это приводит к разночтениям как в понимании самих Законов, так и их роли и месте в общем процессе анализа. Эти разночтения, усугубляемые отсутствием зафиксированной пошаговой методики применения, снижают эффективность использования Законов в проектах. Поэтому разработка подобного документа, содержащего развернутые характеристики ЗРТС и иллюстрированную примерами методику их применения, является весьма актуальной задачей.

2. ОБЩАЯ СТРУКТУРА ЗРТС

2.1 ПОНЯТИЕ ЗРТС

Законы развития технических систем - это комплексы статистически достоверных линий развития, описывающих закономерный последовательный переход систем из одного конкретного состояния в другое и справедливых для всех технических систем или их больших классов.

ЗРТС носят статистический характер, т.е. не обязательны к выполнению. Они являются внешним проявлением своего рода естественного отбора, который идет в мире техники. Действительно, технические системы конкурируют между собой за области применения, как биологические системы - за экологические ниши (есть и другие виды конкуренции - например, военные системы вступают между собой во взаимодействие типа "хищник - жертва").

В конкурентной борьбе побеждают те системы, которые лучше других удовлетворяют требованиям общества. Эти требования, в общем, сводятся к одному: работать как можно лучше, а потреблять ресурсов и производить нежелательных отходов как можно меньше (более подробно об этом будет сказано при описании Закона повышения идеальности). Поскольку самые различные ТС сталкиваются примерно с одними и теми же проблемами, то и методы их решения, в общем, стереотипны. Так вот, ЗРТС как раз и являются хорошо систематизированным списком таких типовых "выигрышных" ходов, благодаря которым системы-победительницы завоевывают и удерживают первенство. Поэтому, хотя следовать этим законам и не обязательно, но очень и очень желательно (если, конечно, не ставить перед собой задачу обеспечить преимущество системам-конкурентам).

Комментарий 1.

Критерий "переход из одного конкретного состояния в другое" требует некоторого пояснения. Представим себе гипотетическую линию развития, описывающую закономерный последовательный переход от "несовершенных" систем ко все более "совершенным". Чем не закон? Все критерии вроде соблюдены - закономерность статистически достоверна и абсолютно универсальна. Наоткрывать подобных "законов" можно сколько угодно - этим в свое время прославился профессор Половинкин. Ему, например, принадлежит честь открытия следующего закона: "идей всегда больше, чем систем".

Проблема с подобными "законами" состоит в том, что они не описывают никаких конкретных переходов. Для сравнения возьмем одну из линий Закона повышения динамичности: переход от монолитной системы к одношарнирной, затем многошарной и гибкой. Что может быть конкретней! Из-за отсутствия конкретности многочисленные псевдо-законы совершенно бесполезны, их невозможно применить на практике. Для отсева подобных "законов" и введен критерий конкретности. Разумеется, само понятие конкретности достаточно размыто - это вопрос соглашения. Он может быть решен только практически: следует выяснить, насколько успешно рекомендуемые законом переходы могут быть применены для совершенствования техники, т.е. степень конкретности описываемых переходов определяется их эвристической силой (и наоборот).

Комментарий 2.

С одной стороны, от ЗРТС требуется всеобщность, т.е. они должны быть справедливыми для всех ТС. Действительно, если и существуют закономерности развития каких-то очень узких классов ТС, например, электроутюгов, то они мало кому интересны (разве что специалистам исключительно по электроутюгам), т.к. не могут быть использованы за пределами своего класса. С другой стороны, имеет смысл принимать во внимание и такие линии развития, которые справедливы хотя и не для всех без исключения ТС, но для некоторых обширных и часто встречающихся их классов - из чисто практических соображений, просто потому, что такие ТС встречаются достаточно часто. Например, Закон оптимизации потоков справедлив только для систем, в которых потоки веществ, полей и информации присутствуют и играют существенную роль. Да, существуют системы, в котрых потоков нет совсем или их роль пренебрежимо мала (к ним, например, относятся так называемые статические системы - стол, вешалка для одежды, всякого рода корпуса и прочие "держалки"), а потому Закон оптимизации потоков к ним практически неприменим. Но и систем с потоками так много, что игнорировать этот Закон смысла не имеет.

Естественной границы между "узким" и "широким" классом систем не существует - это опять-таки вопрос договоренности. Соответственно, по этому параметру нельзя однозначно судить, относится ли свежевыявленная закономерность к ЗРТС или нет. Например, электронные схемы наверняка имеют свои специфические комплесы линий развития. Являются ли они достаточно широким классом систем, чтобы включать эти комплексы в ЗРТС, или нет? Ответ чисто практический - если в обозримом будущем мы собираемся регулярно и интенсивно заниматься электронными схемами, наверное, в этом есть смысл.

По крайней мере, в данной работе рассматриваются только Законы, имеющие ОЧЕНЬ широкую область применения.

2.2 ПОНЯТИЕ МЕХАНИЗМА ЗРТС

Механизм ЗРТС - это конкретная линия развития, реализующая данный закон. Законы и их основные механизмы будут подробно описаны в дальнейшем, поэтому здесь примеры не приводятся.

Следует отметить, что сами законы могут являться механизмами других законов. Таким образом, все законы вместе образуют иерархическую систему (см. Рисунок 1).

2.3 ПОНЯТИЕ АНАЛИТИЧЕСКОГО ИНСТРУМЕНТА (МЕТОДИКИ ПРИМЕНЕНИЯ ЗРТС)

Аналитический инструмент - это алгоритмизированная методика применения закона, выделенная в самостоятельный шаг анализа. На Рисунок 1 эти методики указаны в скобках рядом с названиями соответствующих законов.

Следует отметить, что аналитические инструменты обычно не исчерпывают полностью свои законы. Например, Feature Transfer - это алгоритм выполнения только одного перехода из целого их комплекса, составляющего Закон перехода в надсистему.

2.4 СТРУКТУРА ЗРТС

Структура ЗРТС представлена на Рисунке 1:

Рисунок 1 Структура ЗРТС

2.5 ПОНЯТИЕ ЭВОЛЮЦИОННОГО АНАЛИЗА

Эволюционный анализ, наряду со свертыванием, Feature Transfer и ф-поиском является аналитически-синтетическим инструментом, поскольку в его рамках анализ имеющейся ТС выполняется с целью поиска направлений ее совершенствования. Т.к. за совершенствование объекта следует браться не раньше, чем будут выявлены его ключевые недостатки, вся эта группа методов вынесена на завершающий отрезок аналитического этапа, расположенный после анализа причинно-следственных цепочек и формирования списка ключевых недостатков (см. Рисунок 2).

Эволюционный анализ выполняется по алгоритмизированной методике и в общем случае включает в себя последовательное рассмотрение всех законов. При этом законы, имеющие собственные аналитические инструменты, применяются в той части, которая не покрывается этими инструментами. В ряде случаев можно заведомо не рассматривать некоторые законы или их отдельные линии. Это относится, например, к Закону оптимизации потоков - как уже говорилось, если в анализируемой ТС потоки веществ, полей и информации отсутствуют или играют пренебрежимо малую роль, этот Закон применять не имеет особого смысла. Или, например, если в проекте имеется строгий запрет на смену механического принципа действия, может оказаться разумным исключение из анализа линии, направленной на динамизацию частей объекта на микроуровне.

Совсем не обязательно, что каждый переход по каждой линии каждого закона даст в результате перспективную идею. Поэтому в итоговый вариант отчета следует включать только те шаги, линии и законы, анализ которых принес значимый результат.

2.6 ЦЕЛИ ЭВОЛЮЦИОННОГО АНАЛИЗА

Эволюционный анализ выполняется с целью:

Сформулировать задачи реализации переходов по конкретным линиям развития.

Рисунок 2 Структура анализа

3. TREND OF S-CURVE EVOLUTION

3.1 ФОРМУЛИРОВКА ЗАКОНА; ОБЩАЯ ХАРАКТЕРИСТИКА

Формулировка закона:

Закономерность развития технических систем, заключающаяся в том, что в процессе развития изменение главных параметров ТС происходит таким образом, что графики временной зависимости этих параметров имеют S-образный вид (Рисунок 3).

Рисунок 3 Trend of S-curve evolution

Имеет смысл сразу указать на одну из типовых ошибок: при попытке локализовать ТС на S-кривой не указывают главные параметры, по которым ведется оценка.

Как видно из Рисунка 1, данный закон расположен на вершине иерархической пирамиды ЗРТС. Раньше считалось, что там должен располагаться Закон повышения идеальности. Но потом выяснилось, что Закон повышения идеальности является "движущей силой", которая вынуждает системы развиваться, а S-curve закон является внешним проявлением этого развития.

Вообще, S-curve закон стоит несколько особняком от других законов. Дело в том, что, в отличие от них, он совершенно не отражает существа происходящих в системах изменений - он лишь демонстрирует их результат, выраженный в изменении главных показателей. Поэтому этот закон не рассматривается в рамках эволюционного анализа, а используется в процедуре Benchmarking"a.

3.2 ХАРАКТЕРИСТИКА, ПРИЧИНЫ И ПРИЗНАКИ ЭТАПОВ РАЗВИТИЯ ТС. ТИПОВЫЕ ВЫВОДЫ.

3.2.1 Первый этап

3.2.1.1.1.1 Характеристика первого этапа

Первый этап развития ТС начинается с момента ее создания и характеризуется очень медленным ростом главных показателей (иногда рост может и вообще прекратиться на какое-то время). Длительность первого этапа может быть самой различной. Например, известно, что противотанковое ружье было создано невероятно быстро - от момента выдачи ТЗ до запуска в серийное производство прошло всего несколько месяцев (Рисунок 4). С другой стороны, топливный элемент (fuel cell) был изобретен еще в 19 веке, а на стадию коммерческого использования вышел только в конце 20-го (Рисунок 5), т.е. "детство" этой ТС длилось почти 100 лет!

Рисунок 4 Противотанковое ружье

Рисунок 5 Топливный элемент

На этом этапе происходит уточнение состава системы, отработка конструкции системы и ее элементов, а также отладка их взаимодействия между собой и с надсистемой.

Пример - разработка новой коробки для пиццы.

Свежую пиццу (Рисунок 6) обычно доставляют потребителю в картонных коробках (Рисунок 7).

Рисунок 6 Пицца

Рисунок 7 Стандартная коробка для пиццы

Обычная коробка не способна долго сохранять тепло. Кроме того, конденсирующаяся на днище влага, интенсивно испаряемая горячей пиццей, смачивает корж, делая его клеклым. В стенках коробки делают отверстия для отвода пара, но интенсивная вентиляция приводит к ускоренному охлаждению, а недостаточная не предотвращает намокание коржа.

Была изобретена новая коробка (Рисунок 8), в которой дно выполнено арочным и снабжено выступами. Воздушные прослойки между пиццей и дном, а также между дном и опорой обеспечивают отличную термоизоляцию, а конденсирующаяся на дне коробки влага не может смачивать корж, приподнятый на выступах.

Рисунок 8 Разработанная коробка для пиццы

Но после того, как была решена основная проблема - обеспечение термо- и гидроизоляции горячей пиццы, возникло множество побочных проблем. Например, выяснилось, что пиццу обычно разрезают прямо в коробке специальным дисковым ножом (Рисунок 9).

Рисунок 9 Разрезание пиццы

Плоское дно обычной коробки легко выдерживает приложенную нагрузку, а арочное дно новой коробки - нет. В итоге решение этой проблемы было найдено: было предложено крышку коробки также сделать выпуклой (Рисунок 10) и использовать ее в качестве подставки для разрезания пиццы (совместной прочности дна и крышки для этого хватает). На поиск решения и его отработку ушло некоторое количество времени, в течение которого термо- и гидроизоляционные свойства коробки нисколько не улучшались.

Рисунок 10 Коробка для пиццы с выпуклой крышкой

Кроме того, была поставлена проблема замка, удерживающего крышку на коробке. Было разработано и опробовано на практике несколько вариантов замка. А в итоге выяснилось, что замок вообще не нужен, т.к. крышка благодаря конусной отбортовке прекрасно удерживается на коробке просто за счет трения. Но силы и время были потрачены, а качество коробки не улучшилось.

Этот пример хорошо иллюстрирует процесс уточнения состава ТС (нужен замок или нет?) и конструкции ее элементов (выпуклая крышка, направляющие канавки для ножа на днище и т.п.), который абсолютно необходим несмотря на то, что главные показатели системы при этом могут изменяться незначительно или не расти совсем.

Главной особенностью первого этапа является тот факт, что система в силу разных причин еще не удовлетворяет требованиям общества, и поэтому практически не используется.

Следует также отметить, что ТС не обязательно должна пройти через все этапы. Нередко бывает, что система так и умирает на стадии разработки, не выйдя за пределы первого этапа. Так случилось с одним из ключевых компонентов программы "Звездных войн" - рентгеновским лазером с атомной накачкой. Расчеты и эксперименты показали, что при существующем уровне техники он не способен, как это планировалось, одновременно поразить множество целей с требуемой точностью. С другой стороны, на новом витке развития техники и технологии система может и ожить. Например, замечательная по красоте заложенной в ней идеи система "лифт в небо" была убита еще на стадии предварительных расчетов, так как выяснилось, что не существует материалов с разрывной прочностью, достаточной для поддержания троса, опущенного с геостационарной орбиты. Однако открытые относительно недавно нанотрубки как раз имеют требуемую прочность. Пока они очень дороги и имеют ничтожную длину, но лиха беда начало... Так что, возможно, эта система еще себя покажет!

3.2.1.1.1.2 Причины первого этапа

· Нехватка ресурсов

За редким исключением, новые ТС создаются в условиях тотального недостатка всех видов ресурсов - материальных, трудовых и интеллектуальных. Действительно, пока система полностью не отработана, не испытана и не прошла проверку на рынке, никто не может гарантировать, что ее ожидает успех, а все затраты окупятся сторицей. Разработка новых технических систем - всегда риск, и для сокращения возможных потерь средства на разработку обычно выделяют весьма экономно. Соответственно, не хватает рук, чтобы параллельно заниматься разными узлами или вариантами, денег на специализированные комплектующие, и просто интеллектуального потенциала немногочисленных ведущих разработчиков, чтобы думать над всеми проблемами одновременно.

Типичное место рождения новой ТС - если уж не сарай, как это было с самолетом братьев Райт (а в похожих условиях рождались и велосипед, и персональный компьютер), то небольшая лаборатория со скромным бюджетом, для которых все сказанное имеет место быть. Соответственно, разработчики вынуждены последовательно переходить от проблемы к проблеме, выискивать компромиссы и обходные пути, брать доступное вместо оптимального и затем долго его приспосабливать, и расплачиваться за все это временем.

В качестве иллюстрации можно использовать ту же коробку для пиццы. Денег было мало, и штатный дизайнер лаборатории Илона Василевская, подключив к делу своего мужа (к счастью, тоже дизайнера), вечерами после работы изготавливала гипсовые формы, выклеивала на них коробки из папье-маше, затем коробки вело при сушке, все приходилось переделывать, и так без конца. Так что первому этапу было от чего затянуться.

· Наличие цепочки "узких мест"

В данном случае под "узкими местами" понимаются особенности системы, независимо снижающие функциональные показатели или повышающие факторы расплаты до неприемлемого для общества уровня. Пока имеется хотя бы одно "узкое место", система видимым образом не развивается, хотя силы и время затрачиваются на устранение остальных "узких мест".

Примером может служить разработка устройства "Аргус", предназначенного для сверхтонкого измельчения стирального порошка (Рисунок 11).

Рисунок 11 Аргус

Довольно долгое время результаты его работы были нестабильны - на одном и том же режиме без всяких видимых причин степень измельчения от испытания к испытанию колебалась в широких пределах. И только спустя какое-то время разработчики выяснили, что проблема крылась в методике измерения. Оказалось, что при остывании смеси частички порошка слипаются друг с другом, искажая результаты замеров. Стоило, в числе прочих хитростей, перед испытанием нагреть металлическую плашку, на которой производились измерения, и стабильность была достигнута.

· Внешние причины

Техника развивается не сама по себе. Ее разрабатывают конкретные люди, живущие в конкретном обществе. И весь комплекс жизненных обстоятельств так или иначе влияет на сроки и успех разработки. К ним, например, относится арест основного разработчика. Для иллюстрации возьмем историю создания динамореактивной пушки (Рисунок 12):

Рисунок 12 Динамореактивная пушка

"В мае 1923 года конструкторы Л.Курчевский и С.Изенбек предложили так называемую динамореактивную пушку (ДРП), в казенной части ствола которой имелось коническое отверстие. Благодаря этому часть пороховых газов вырывалась через дно гильзы и коническое сопло, что уменьшало отдачу до минимума. Динамореактивный принцип сочли перспективным, была создана специальная комиссия для разработки подобных орудий… Первым результатом … стала предложенная Л. Курчевским на испытания летом 1923 года 76-мм ДРП, ствол которой был заимствован от 76-мм пушки образца 1902 года. В конце того же года были проведены испытания одного из образцов ДРП для установки на самолет.

И на этом, увы, все пока прекратилось. В 1924 году Курчевский был арестован по обвинению в растрате государственных средств и сослан на Соловки на 10 лет."

Василий МАЛИКОВ, академик РАРАН. Журнал "Русское оружие", 1997

Другим обстоятельством может служить законодательный запрет на определенные разработки. Например, по недавно принятому в Японии закону любые разработки по клонированию человеческих эмбрионов запрещены под страхом 5-летнего тюремного заключения.

3.2.1.1.1.3 Признаки 1-го этапа

· Главный признак: ТС еще не вышла на рынок или занимает на нем маленькие, строго ограниченные ниши

Игнорирование этого признака приводит к типовой ошибке, когда ТС, находящуюся на стадии испытаний и не представленную на данном секторе рынка, пытаются относить ко 2-му или 3-му этапам на том основании, что на данном участке времени система улучшалась значительно быстрее, чем раньше. Действительно, на стадии лабораторных исследований главные показатели системы могут меняться неравномерно, испытывая всплески и периоды застоя. Но все это время они находятся ниже черты минимально допустимых обществом значений, что закрывает им путь на рынок.

· В состав системы входят элементы, разработанные для других систем

Как уже говорилось, на первом этапе система развивается в услових дефицита ресурсов. В этой ситуации разработчики обычно концентрируют усилия на ядре системы, а в качестве вспомогательных элементов стремятся использовать уже готовые, разработанные для других систем (с минимально необходимой подгонкой). Заимствование может быть как физическим, так и на уровне конструкции. Пример - разработка первого автомобиля (Рисунок 13). Пожалуй, только двигатель разработан специально для него (и то насчет котла особой уверенности нет), а все остальные части явно заимствованы.

Рисунок 13 Первый автомобиль

С одной стороны, такой подход экономит силы и время. С другой стороны, чужеродные элементы обычно плохо приспособлены для выполнения функций в новых условиях, что существенно снижает эффективность новой ТС. Но в общем, это правильный подход - доработка второстепенных элементов без особого ущерба откладывается до тех пор, пока для этого не появится достаточно ресурсов.

· Система часто объединяется с элементами надсистемы. Причем эти элементы почти не изменяются - изменяется и приспосабливается система.

В принципе, этот признак идентичен предыдущему, но на другом системном уровне. Т.к. система еще не способна адекватно выполнять все необходимые функции, часть из них разработчики перекладывают на доступные элементы надсистемы.

Возьмем, например, гиперзвуковой летательный аппарат с прямоточным реактивным двигателем. Прямоточный двигатель на небольших скоростях неэффективен, поэтому такой аппарат пока не может взлететь и разогнаться самостоятельно. Разработчики нашли выход: экспериментальные образцы запускают с обычного реактивного самолета, да еще с реактивным ускорителем, т.е объединили целых три системы (Рисунок 14):

Рисунок 14 Прямоточный воздушно-реактивный двигатель + ракетный ускоритель + B52

Образец в полете показан на Рисунке 15:

Рисунок 15 Самолет с прямоточным реактивным двигателем

· Система стремится объединяться с альтернативными системами, господствующими на рынке.

Данный признак является важным частным случаем предыдущего. Дело в том, что правильно выполненное объединение альтернативных систем приводит к объединению их достоинств и гашению недостатков. Новая система обычно превосходит имеющиеся по некоторому выделенному набору главных показателей, но проигрывает им по всему комплексу требований. Старые же системы, наоборот, прекрасно вписаны в надсистему, но им уже не хватает сил для выхода на новый уровень главных показателей. Поэтому объединение выгодно обеим сторонам - новая система получает ресурсы для развития, а старая продлевает свое доминирующее положение.

Примером может служить история создания реактивного двигателя. На определенном этапе его ставили в качестве ускорителя на винтовые истребители, и только последующий прогресс позволил перейти к чисто реактивным машинам.

· Система стремится потреблять ресурсы из надсистемы, специально для нее не предназначенные. Система приспосабливается к потреблению этих ресурсов.

Действительно, пока система не доказала свою эффективность, никто не будет ее снабжать специально для нее созданными ресурсами. Типовой ход в этом случае - попытаться найти в надсистеме уже готовый доступный ресурс и приспособить систему для его потребления. Правда, ресурс может оказаться не слишком подходящим, но разработку специализированных ресурсов можно отложить до лучших времен. Поскольку сразу трудно определить, какой ресурс следует использовать, бывает необходимо перепробовать несколько разных, порой весьма экзотических. Например, одна из первых моделей двигателя внутреннего сгорания должна была работать на спорах папоротника!

Внешние проявления:

· Высокий уровень базовых патентов. Уровень последующих патентов быстро снижается к началу переходного этапа.

Создание новой системы - дело обычно достаточно сложное, в ее основу необходимо закладывать весьма нетривиальные идеи, что закономерно проявляется в относительно высоком уровне базовых патентов. В дальнейшем патентуются разного рода усовершенствования, не столь радикальные, как первоначальная идея, что приводит к снижению уровня патентов (Рисунок 16).

Рисунок 16 Уровень изобретений (по книге Г.С. Альтшуллера "Творчество как точная наука"? М. Советское радио 1979, стр 115)

Следует отметить, что уровень патентов - вещь в достаточной мере субъективная, поэтому данный признак является сугубо вспомогательным. Сам по себе он ни в коей мере не может служить исчерпывающим доказательством того, что система находится на первом этапе.

А вот для разработчиков новых стандартов (и микро-стандартов) на решение изобретательских задач, приемов разрешения противоречий и других решательных инструментов, этот признак может быть очень полезен. Дело в том, что самые эффективные инструменты могут быть, скорее всего, разработаны на базе самых сильных решений. А как их отобрать среди миллионов патентов? Данный признак дает хороший способ - наиболее сильные решения следует искать в базовых патентах.

С другой стороны, инженеры не так уж часто занимаются созданием новых ТС. Значительно больше времени и сил они тратят на совершенствование существующих. Не факт, что решательные инструменты, наиболее эффективные для создания ТС, столь же хороши для улучшения имеющихся. Кроме того, очень даже возможно, что улучшение систем на каждом из этапов требует специфического набора инструментов. Любопытно было бы собрать несколько коллекций патентов - базовых и этапных, и рассортировать по ним имеющиеся инструменты, а в дальнейшем и разработать новые, специально ориентированные на конкретный этап.

· Количество патентов остается примерно постоянным (Рисунок 17).

Это тоже легко объяснимо. Пока ТС находится в разработке, окончательно неизвестно, какие конструктивные особенности останутся в серийном варианте, а какие окажутся нежизнеспособными. Поэтому патентовать их особого смысла не имеет. Данный признак также является сугубо вспомогательным.

Рисунок 17 Количество изобретений (по книге Г.С. Альтшуллера "Творчество как точная наука"? М. Советское радио 1979, стр 115)

· Затраты превосходят доход (Рисунок 18).

Причины очевидны. ТС находится в разработке, обладает массой недостатков (пока), и поэтому либо совсем не продается, либо продается в ничтожных количествах как некая экзотика. Соответственно, доходы от продажи обычно не покрывают затрат на разработку и доводку.

Рисунок 18 Прибыль (по книге Г.С. Альтшуллера "Творчество как точная наука"? М. Советское радио 1979, стр 115)

· Число модификаций системы и глубина различий между ними сначала нарастают, а затем падают.

Действительно, система обычно создается в какой-то одной, простейшей модификации. Затем в процессе совершенствования появляются разные варианты. Поскольку заранее неизвестно, какое сочетание признаков окажется наиболее удачным, поначалу варианты множатся и ветвятся. Однако со временем ситуация проясняется, малоэффективные комбинации отмирают, и остается всего несколько фаворитов, между которыми к тому же происходит обмен признаками.

Примером может служить история авиации (Рисунок 19). Первые самолеты сильно отличались друг отдруга. Варьировалось все - количество, форма и расположение крыльев, количество и расположение двигателей; тянущие, толкающие и комбинированные схемы пропеллеров, и т.д. Но постепенно выкристаллизовались несколько основных типов, не так уж отличающихся друг от друга.

Рисунок 19 Самолеты

3.2.1.1.1.4 Возможные выводы из того факта, что система находится на первом этапе развития.

· Требуется значительно повысить отношение "функциональные возможности/затраты".

Данный вывод совершенно очевиден и в комментариях не нуждается. ТС на первом этапе еще очень сырая, недоработанная - надо улучшать функционирование и снижать факторы расплаты, причем существенно, иначе на рынок не пробиться.

· Главные усилия должны быть направлены на выявление и устранение "узких мест", препятствующих выходу на рынок.

Этот вывод следует из одной из причин нахождения ТС на первом этапе - наличия множества "узких мест", каждое из которых независимо снижает эффективность системы ниже минимально допустимого уровня. Пока существует хоть одно из них, система неконкурентоспособна. Значит, их нужно выявить и удалить всех до одного. При этом не нужно тратить силы и время на улучшение одного параметра до максимально возможного уровня, пока другой недопустимо низок. Лучше иметь удовлетворительный уровень всех характеристик, чем отличный для одних и никуда не годный для других.

В самом деле, если представить себе гипотетический пассажирский летательный аппарат, у которого два недостатка - неспособность летать и неспособность обеспечить безаварийную посадку, то сколько ни улучшай его способность к дальним/высотным/скоростным полетам, без обеспечения мало-мальски безопасной посадки пассажиров на него не заманишь.

· Допустимы глубокие изменения в составе системы и ее элементов вплоть до смены их принципа действия.

С одной стороны, на первом этапе система еще не накопила "инерции" - нет ни специализированной инфраструктуры, ни традиционных поставщиков, ни массового производства, которые обычно препятствуют сколь-нибудь серьезным изменениям. С другой стороны, совсем не факт, что имеющийся на данный момент состав системы и конструкция ее элементов оптимальны (будь это так, ТС пошла бы на рынок, а не прозябала бы на первом этапе). Следовательно, есть и серьезная причина (масса недостатков и "узких мест"), и возможность (отсутствие "инерции") для коренных изменений в ТС. Можно значительно менять ее состав (смело применяя радикальные варианты свертывания) и конструкцию ее элементов на любую глубину.

· Имеет смысл развивать систему для использования в одной конкретной области, где соотношение ее достоинств и недостатков наиболее приемлемо.

Нередко новая ТС обладает широкими возможностями, позволяющими (в перспективе) использовать ее сразу в нескольких областях. Однако попытка развивать ее сразу в нескольких направлениях ошибочна, т.к. приводит к распылению ресурсов и затягиванию первого этапа. Логичнее поступать наоборот - сконцентрировать усилия на продвижении ТС только в одном направлении. А в дальнейшем, выйдя на рынок, система сможет привлечь ресурсы для проникновения и в остальные отрасли.

При этом сектор рынка для первоначального проникновения следует в первую очередь выбирать исходя из соображений простоты внедрения, даже если этот сектор окажется не самым выгодным из возможных. Простота внедрения определяется, в частности, тем, что избранный сектор рынка должен быть особо заинтересован в возможностях, которые ТС может предоставить к моменту выхода на рынок, и равнодушен к оставшимся на тот момент недостаткам.

Похоже, что подобная стратегия лежит в основе выявленной Борисом Злотиным закономерности, согласно которой новые ТС впервые появляются не на том секторе рынка, на котором в итоге они добиваются максимального успеха. Например, компьютеры впервые вышли на рынок в качестве устройств для вычислений (Рисунок 20). А сейчас они в основном используются для обработки текстовой и графической информации в реальном масштабе времени. И правильно, т.к. уже на заре своей истории ЭВМ умели считать достаточно быстро, а средства ввода-вывода были крайне несовершенны, к работе с текстами и графикой неспособны. А выйдя на рынок в качестве вычислителей, компьютеры получили ресурсы для проникновения в другие области применения.

Рисунок 20 Компьютер

· Следует ориентироваться на существующую инфраструктуру и источники ресурсов.

Очевидно, что ориентация на специально созданную инфраструктуру и ресурсы может сильно затруднить выход ТС на рынок. Препятствием будет служить проблема "курицы и яйца" - системой не пользуются из-за отсутствия необходимых ей инфраструктуры и ресурсов, а инфраструктуру и источники ресурсов не создают из-за отсутствия спроса на них (систему-то не используют!). Поэтому лучше поначалу приспосабливать ТС к имеющимся ресурсам, пусть даже и не очень подходящим. Выйдя с их помощью на рынок, ТС разорвет порочный круг, создаст спрос на специализированные ресурсы и в итоге их получит. Действительно, первые самолеты потребляли автомобильный бензин и использовали для взлета/посадки луга и дороги. Потребуй они сразу специальных аэродромов, диспетчерской службы, радарной сети и авиакеросина для заправки, их путь в небо был бы еще более тернистым. А так, поначалу пользуясь малым, в итоге самолеты все это получили.

· Имеет смысл объединять ТС с лидирующими на данный момент системами.

Как уже говорилось, такое объединение позволяет новой ТС быстро выйти на рынок и получить ресурсы для дальнейшего развития. При этом ее недостатки будут скомпенсированы старой системой, а достоинства повысят конкурентоспособность полученного тандема. На этом пути образуются ТС с дефисом в названии: парусно-паровые, колесно-гусеничные, электро-механические и полу-автоматические. При этом надо отдавать себе отчет, что подобные системы бывают относительно короткоживущими - их новая компонента в результате последующего развития отторгает старую и переходит к автономному существованию.

· Для определения перспективности ТС необходимо наряду с обычным анализом естественных пределов ее развития выполнить прогноз ее надсистемы.

Нужно учесть, что первый этап развития обычно длится несколько лет. Следовательно, ТС в момент выхода на рынок будет взаимодействовать не с сегодняшней надсистемой, а с той, которая сложится к тому времени. Может измениться многое - доступные ресурсы, законодательство и даже потребности общества.

Например, в свое время производство бумаги требовало все больше древесины, что приводило к вырубке лесов. Для спасения леса нужно было найти замену древесине. Ценой значительных затрат времени и сил задачу решили - был создан пластик, почти не отличимый от бумаги. Но, увы и ах, - к этому моменту была разработана и внедрена технология интенсивного выращивания деревьев на плантациях (изощреная агротехника плюс особо быстрорастущие виды деревьев), полностью покрывающая потребности целлюлозно-бумажной промышленности. И созданная с таким трудом пластиковая бумага, действительно очень хорошая, оказалась никому не нужной - все-таки она немного дороже настоящей.

Так что необходим прогноз надсистемы по следующим ее типам: объект главной функции ТС, инфраструктура/источники ресурсов, технология изготовления/материалы, генерируемые ТС вредные факторы.