Для чего используют близнецовый метод. Методы изучения генетики человека

Среди методов генетического анализа наряду с генеалогическим большое значение имеет близнецовый метод. В какой мере признак зависит от наследственных особенностей организма, т. е. от его генотипа, и в какой - от условий внешней среды? Этот вопрос касается самых различных признаков человека: особенностей строения организма, физиологических функций, наследственных болезней, таких специфических черт человека, как типологические свойства высшей нервной деятельности и психики. В решении этих вопросов существенное место принадлежит близнецовому методу генетики. С его помощью получены убедительные доказательства того, что индивидуальные свойства человека формируются, складываются в процессе его развития под влиянием как наследственных факторов, так и физической и социальной среды. Это в полной мере относится и к патогенезу наследственных болезней. Более того, близнецовый метод позволил оценить относительную роль, удельный вес генетических и средовых факторов в развитии каждого конкретного признака.

Близнецы у человека имеют разное происхождение. Однояйцовые, или монозиготные (MZ), близнецы развиваются из одного оплодотворенного яйца (одной зиготы) вследствие ее разделения с образованием двух эмбрионов. Партнеры монозиготной пары имеют полностью идентичные генотипы, и все различие их признаков зависит только от условий среды. Разнояйцовые, или дизиготные (DZ), близнецы рождаются тогда, когда созревают одновременно две яйцеклетки, оплодотворяемые двумя спермиями. Партнеры дизиготной пары генотипически различны. Они сходны между собой не более, чем братья и сестры, рожденные порознь. Однако, благодаря одновременному рождению при совместном воспитании у них будет значительная общность среды. Различие их признаков обусловлено в основном неидентичным генотипом.

Соотношение моно- и дизиготных близнецов в популяции, т. е. компонента многоплодия, определяется различным путем, в том числе методом Вайнберга, который основывается на возможной одно- и разнополости дизиготных близнецов. Вероятность оплодотворения второй яйцеклетки спермиями, несущими хромосомы X или У, равна 50 %, т. е. вероятности рождения одно- или разнополых дизиготных близнецов примерно равны. Таким образом, разнополые близнецы составляют 50 % всех дизиготных близнецов и, следовательно, их общее число равно удвоенному числу разнополых близнецов в данной выборке. Число монозиготных близнецов соответствует разности общего числа близнецов и удвоенного числа разнополых близнецов.

Коэффициент дизиготной близнецовости (d) показывает, какое число дизиготных пар рождается в данной популяции или выборке на 1000 родов. Его определяют по формуле: d = 2U/N x 1000, где U - число разнополых DZ-пар, а N - общее число родов в выборке. Коэффициент монозиготной близнецовости (m) вычисляют по формуле: m = L-2U/N x 1000, где L - общее число близнецов в изученной выборке. Использование этих коэффициентов позволяет сравнивать частоту моно- и дизиготных близнецов в разных выборках.

Основу любого близнецового исследования составляет диагностика зиготности партнеров пары, т. е. установление факта моно- или дизиготного происхождения близнецов. В основе диагностики зиготности лежит изучение сходства (конкордантности) и различия (дискордантности) партнеров близнецовой пары по совокупности таких признаков, которые мало изменяются под влиянием среды. Метод, получивший название поли-симптомного (метод сходства, подобия), включает в себя исследование конкордантности и дискордантности близнецов по таким признакам, как цвет и форма волос, цвет и разрез глаз, форма ушей, бровей, носа, губ, подбородка и др. Для каждого из этих признаков разработаны балльные и иные шкалы оценок, которые позволяют, сравнивая эти оценки у партнеров пары близнецов, поставить правильный диагноз. В принципе монозиготные близнецы должны быть конкордантны по всей совокупности признаков, используемых при методе подобия, в то время как дизиготные по части признаков дискордантны. К недостаткам метода относятся его субъективизм, возможность изменения внешних признаков монозиготных партнеров под действием средовых факторов, а также невозможность его использования у детей раннего возраста.

К другим методам диагностики зиготности близнецов относятся: иммуногенетический, когда близнецов-партнеров сравнивают по эритроцитарным антигенам (системы групп крови ABO, MN, Rh, P и др.), составу белков сыворотки крови, гаплотипам системы HLA. Эти менделирующие признаки не изменяются в течение жизни индивида, не зависят ни от каких внешних факторов, т. е. со всех точек зрения являются идеальными генетическими маркерами. При отсутствии ошибок определения даже единственное различие будет свидетельствовать о дизиготности близнецов. Для диагностики зиготности используют также данные дерматоглифики (исследование кожного рельефа пальцев рук и ладоней), изучение способности чувствовать вкус особого вещества - фенилтиокарбамида, которая наследуется как моногенный признак.

В больших близнецовых выборках, т. е. в популяционных исследованиях близнецов, целесообразно применять метод анкетирования. Близнецам рассылается анкета, содержащая перечень вопросов относительно сходства близнецов и наличия случаев ошибок при их узнавании родителями, учителями, друзьями.

Сущность близнецового метода заключается в сравнении внутрипарного сходства в группах моно- и дизиготных близнецов, что позволяет с помощью специальных формул оценить относительную роль наследственности и факторов среды в развитии каждого конкретного признака. При исследовании качественных признаков внутрипарное сходство оценивают по принципу "подобны - различны". Пары, в которых партнеры подобны друг другу по данному признаку, называются конкордантными. Если один из партнеров обладает данным признаком, а второй нет, то пара называется дискордантной. Например, по группе крови пара считается конкордантной, если оба партнера имеют одну группу, но если группа крови партнеров различна, то пара дискордантна. Для доказательства роли наследственности в развитии признака достаточно сравнить долю (процент) конкордантных пар в группах моно- и дизиготных близнецов.

Рассмотрим это на примере сахарного диабета. Если один из монозиготных близнецов болен диабетом, то второй партнер заболевает в 65 % случаев (в 65 % случаев они конкордантны). Если один из дизиготных близнецов заболел диабетом, то второй заболевает только в 18 % случаев. Большая конкордантность в группе генетически идентичных партнеров монозиготных пар доказывает, что в этиологии диабета наследственное предрасположение играет существенную роль.

Для количественной оценки роли наследственности и среды применяют различные формулы. Чаще всего пользуются коэффициентами наследуемости (Н) и влияния среды (Е), вычисляемыми по формуле Хольцингера:

C MZ - C DZ H = --------- x 100; E = 100 - H 100 - C DZ

где C MZ - процент конкордантных пар в группе монозиготных, a C DZ - то же в группе дизиготных близнецов, в приведенном выше примере сахарного диабета доля наследственной обусловленности признака составляет: H = (65-18)/(100-18) x 100 = 57%, а влияние среды Е = 100 - 57= 43 %. Результаты вычислений по формулам Хольцингера подтверждают, что заболевание диабетом обусловлено генетическими факторами не меньше, чем условиями среды.

Используем формулу Хольцингера еще в двух примерах. Предположим, что признак (группа крови) целиком обусловлен генотипом и не зависит от воздействия среды. В этом случае в группе монозиготных близнецов конкордантность партнеров полная в силу идентичности их генотипов (C MZ = 100%), а конкордантность в группе дизиготных близнецов, определяемая случайным сочетанием генов их родителей, будет неполной, например, 40 % (C DZ = 40 %). Подставляя эти значения в формулу Хольцингера, получим: H = (100-40)/(100-40) x 100 = 100%;

Иной результат получается для признака, развитие которого не зависит от генотипа и полностью обусловлено влиянием среды (так бывает при некоторых инфекционных болезнях). В этом случае процент конкордантных пар в группах моно- и дизиготных близнецов один и тот же, например, по 90 % в обеих группах. Подставляя эти значения конкордантности в формулу Хольцингера, получим Н = 0 %, Е = 100 %. Следовательно, коэффициент наследуемости для разных признаков различен; он изменяется от 100 % для признаков, полностью обусловленных генетическими факторами, до 0 % для признаков, целиком зависящих от влияния среды. В большинстве случаев развитие признаков определяется совместным влиянием генотипа и условий среды, тогда коэффициент наследуемости меньше 100 % и больше 0 %, причем он тем больше, чем сильнее влияние генетического фактора.

Коэффициент наследуемости можно вычислить и для количественных признаков, при которых партнеры пары отличаются друг от друга не по альтернативе "конкордантны - дискордантны", а по выраженности признака. В этих случаях коэффициент наследуемости вычисляют по несколько измененной формуле Хольцингера:

R MZ - r DZ H = ----------- 100; Е = 100 - Н, 1 - r DZ
где r MZ - коэффициент внутриклассовой корреляции в группе монозиготных, a r DZ - то же в группе дизиготных близнецов.

Математический аппарат близнецового анализа в последние годы значительно расширился, что позволяет в ряде случаев получить дополнительные сведения об относительном значении генотипа и среды в онтогенезе признаков организма.

Рассмотрим, что дал близнецовый метод при оценке удельного веса наследственных и средовых факторов в развитии отдельных признаков человека.

Остановимся на крайнем случае преобладающего влияния генетических факторов: группы крови полностью обусловлены генотипом и никакие условия среды, совместимые с жизнью, не приводят к их изменению. Монози-готные близнецы всегда конкордантны по группам крови. Коэффициент наследуемости, вычисленный по формуле Хольцингера, равен 100 %. Это же относится и ко всем тем случаям, когда ген непосредственно программирует признак, являясь его матрицей. Примером могут служить первичная структура ферментов, электрофоретические варианты белков плазмы крови и др. Однако, чем длиннее цепь процессов развития признака, отделяющая его от гена, тем больше может быть влияние среды.

Таблица 4. Частота заболевания обоих близнецов при некоторых видах патологии
Болезнь Частота заболевания второго близнеца в выборках, %
MZ DZ
Корь 98 94
Коклюш 97 93
Паротит 82 74
Туберкулез 67 23
Ревматизм 47 17
Сахарный диабет 65 18
Эпилепсия 67 3
Шизофрения 69 10
Врожденное сужение привратника желудка 67 3
Врожденный вывих бедра 41 3
Расщелина неба 33 5
Косолапость 32 3

Перейдем к оценке роли генетических и средовых факторов в патогенезе различных заболеваний человека. При инфекционных болезнях (бактериальной, вирусной инфекции) роль внешней среды очевидна. Еще недавно считали чуть ли не абсурдом предполагать зависимость этих болезней от наследственных факторов. Однако данные, полученные с помощью близнецового метода, заставили в ряде случаев изменить это представление (табл. 4). Данные табл. 4 показывают, что при заболевании корью и коклюшем одного из партнеров близнецовой пары вероятность заболевания второго (конкордантность пары) в группах моно- и дизиготных близнецов практически одинаковая. Преобладающая роль инфекционного фактора в этих случаях вполне отчетлива. Однако, при заболевании одного из близнецов паротитом частота заболевания второго партнера в монозиготной паре несколько больше, чем в дизиготной. Еще более очевидно это при туберкулезе. Вероятность заболевания второго близнеца в монозиготной паре почти в 3 раза больше, чем в дизиготной. Следовательно, при идентичном генотипе сходная реакция на внешний фактор (туберкулезная инфекция) наступает чаще, чем при разных генотипах, что доказывает существенную роль генетических факторов. Более того, исследование конкордантности моно- и дизиготных близнецов при туберкулезе и некоторых других болезнях позволило показать (в этом видны уникальные возможности близнецового метода), что высокая конкордантность заключается не только в сходстве по возникновению болезни (заболел - не заболел), но и в ее клинических формах и локализации процесса. Монозиготные близнецы значительно чаще болеют формами туберкулеза, тождественными по течению и исходу.

При многих хронических внутренних болезнях, психических болезнях и пороках развития различия в частоте заболеваемости второго близнеца при болезни первого среди монозиготных близнецов значительно выше, чем среди дизиготных (см. табл. 4). Следовательно, в возникновении многих болезней наряду с факторами внешней среды в большей или меньшей степени участвует наследственный фактор. Это позволило открыть генетическое предрасположение к болезням, и близнецовый метод сыграл в исследовании этого явления немаловажную роль.

Остановимся кратко на морфологических признаках строения тела и черт лица. Среди них можно отметить такие, по которым у монозиготных близнецов наблюдается высокая (близкая к 100%) конкордантность при значительной дискордантности дизиготных. Так, по форме бровей, носа, губ и ушей, цвету глаз, волос и кожи монозиготные близнецы конкордантны в 97-100 %, а дизиготные (в зависимости от признака) - в 70-20 % случаев. Следовательно, эти признаки мало зависят от влияния факторов внешней среды. Из количественных признаков рост меньше зависит от условий среды, чем масса тела. Среднее внутрипарное различие роста у монозиготных близнецов составляет 1,7 см, а дизиготных - 4,4 см. Масса тела больше зависит от питания и расхода энергии.

Для иллюстрации наследуемости физиологических признаков рассмотрим пример артериального давления. Критерием конкордантности по этому постоянно меняющемуся признаку служило сходство между партнерами в определенных пределах (5 мм рт. ст.). Такая конкордантность была отмечена у 63 % монозиготных и только у 36 % дизиготных близнецов.

С помощью близнецового метода исследовали некоторые онтогенетические характеристики, несомненно зависящие от действия совокупности факторов. Для выяснения вопроса, зависит ли от наследственных факторов время первой менструации у девочек, определяли внутрипарное различие возраста, в котором началась первая менструация. Оказалось, что в монозиготных парах различие составляет в среднем 3 мес, а в дизиготных - 13 мес.

Весьма важен вопрос о том, зависит ли от наследственных факторов продолжительность жизни человека или она целиком определяется условиями внешней среды. Выяснить этот вопрос мог только близнецовый анализ. Сравнение внутрипарного различия продолжительности жизни в группах моно- и дизиготных близнецов показало, что долголетие в определенной мере обусловлено генетическими факторами. Долгожительство в некоторых местностях земного шара нельзя объяснить только благоприятными условиями среды (горный климат, особый режим питания и труда). Хотя влияние этих факторов не вызывает сомнений, существенную роль играет и генотип.

Для педиатров, психологов и педагогов определенный интерес представляет генетическая и средовая детерминация типа высшей нервной деятельности, психологических свойств и характеристик интеллекта. Почему у детей различные способности к музыке, математике, рисованию? В какой мере признаки интеллекта зависят от наследственных факторов, а в какой - от физической и социальной среды? В решении этих вопросов большое место занимают данные, полученные на близнецах, а именно, изучение конкордантности партнеров в группах моно- и дизиготных близнецов.

Остановимся на роли наследственных и средовых факторов в развитии одаренности ребенка. Всесторонняя одаренность - крайне редкое явление. Талантливый музыкант может быть бездарным в области математики, а выдающийся математик - совершенно неспособным к живописи. Способности следует изучать по отношению к тому или другому конкретному виду деятельности. Исследование конкордантности показало, что партнеры мо-нозиготных пар обычно проявляют способности к одному и тому же виду деятельности, а дизиготные партнеры - к различным видам. Многочисленные примеры приведены в монографии И. И. Канаева (1959).

Известные музыканты, дирижеры оркестров Вольф и Вилли Гайнц были монозиготными близнецами. Их внешнее сходство было столь велико, что даже их учитель музыкант Регер не мог различить их. Внешнее сходство дополнялось поражающим сходством в пристрастии к произведениям определенных композиторов, трактовке произведений и манере дирижировать. Подготовив одну и ту же оперу каждый в своем оркестре, они могли в случае нужды заменить друг друга. При этом ни исполнители - певцы и оркестранты, ни публика не замечали, что дирижирует другой человек. Сходство монозиготных близнецов не всегда бывает таким полным. И. И. Канаев приводит другой пример. Монозиготные сестры-органистки, по свидетельству их учителя проф. И. А. Браудо, были чрезвычайно похожи по признакам музыкального дарования - слуху, музыкальной памяти, исполнительским данным, но различались по интерпретации произведений.

Многочисленные примеры высокой конкордантности монозиготных близнецов, никак не проявляющейся столь полно у дизиготных, убедительно доказывают, что и признаки психики, способности, признаки интеллекта в определенной мере обусловлены генотипом. Однако это отнюдь не исключает значительной, иногда определяющей роли физической и социальной среды.

Близнецовый метод позволил доказать основной закон генетики развития: индивидуальные свойства каждого организма формируются, складываются в онтогенезе под контролем генотипа и среды. Закон взаимодействия наследственных факторов с физической и социальной средой справедлив для любых признаков человека, особенностей строения его тела, физиологических функций, патологии. Ему подчиняется и развитие таких сложных признаков, как тип высшей нервной деятельности, особенности психики, способности и склонности. Никакие условия социальной среды, никакой труд талантливых наставников, никакие упражнения, тренировки, обучение не воспитают выдающегося художника, певца, математика, спортсмена из ребенка, не имеющего соответствующих наследственных задатков. Однако эти задатки не смогут полностью проявиться без соответствующих условий. Необходимым условием их развития является социальная среда - воспитание, обучение, опытное руководство и систематический труд.

Закон взаимодействия наследственности и среды в развитии признаков человека в наше время не требует новых доказательств, хотя до сих пор среди врачей, педагогов и психологов можно встретить сторонников как абсолютной роли воспитания и среды, так и фатального значения наследственности. Их споры - эхо давно отшумевших бурь, попытка ревизовать основной закон генетики развития.

Значение близнецового метода в медицинской генетике этим не ограничивается. По мере разработки теоретических основ близнецового метода постепенно сформировался особый раздел этих исследований - метод контроля по партнеру. Область его применения чрезвычайно разнообразна и выходит далеко за пределы узко генетических исследований. Значение контроля по партнеру в анализе фенотипической вариации индивидуального генотипа, генетике развития, фенотипических проявлений наследственных аномалий также непрерывно растет.

В методе контроля по партнеру "используют" только монозиготных близнецов. Априорная идентичность их генотипов, которая позволяет рассматривать партнеров в генетическом плане как одного человека, дает возможность очень точно и демонстративно оценить эффект того или иного внешнего воздействия, если один партнер подвергается действию этого фактора, а другой не подвергается и служит контролем. Предположим, что для лечения определенного заболевания предлагается новый лекарственный препарат. После многочисленных лабораторных исследований препарат передают на клинические испытания. Необходимо проверить его эффективность у больных. Для этого обычно большую группу больных делят на две части. Первые получают новый препарат, а вторые - нет (их лечат прежними методами). Через определенное время сравнивают результаты лечения. Если препарат действительно эффективен, то среди принимавших его выздоровевших лиц или лиц с улучшением состояния будет больше, чем среди леченных другими методами. Однако индивидуальная чувствительность к любому препарату чрезвычайно гетерогенна, вариабельна. Она зависит от генетических факторов, а также от возраста больных, особенностей патологического процесса и многих других причин, которые и в "опытной", и в контрольной группах могут быть разными. Обе эти группы обычно стараются сделать достаточно представительными, в них включают сотни, а иногда и тысячи больных, чтобы затем, пользуясь специальными статистическими методами, нивелировать все параметры в обеих группах и получить достоверную информацию о действии нового препарата. Из этого видно, какие поистине уникальные возможности открывает перед фармакологией и фармакогенетикой (наукой, изучающей генетические основы чувствительности к лекарственным препаратам) близнецовый метод контроля по партнеру. "Используя" монозиготных близнецов, конкордантных по болезни, когда один партнер каждой пары получает новый препарат, а второй служит "контролем", можно получить совершенно объективные сведения об эффективности препарата. В этом случае почти исчезают многочисленные ограничения по генетическим, физиологическим и средовым факторам, влияющим на чувствительность к препарату. Такие исследования на близнецовой модели выгодны и в экономическом плане - они требуют лишь 20-30 пар.

Метод контроля по партнеру в последнее время успешно используется. Он позволяет оценить лечебный эффект новых фармакологических средств при разных способах введения, исследовать фазы их действия, показать различия фармакокинетики новых и старых препаратов. Например, Р. М. Заславская и соавт. (1981) на ограниченном числе близнецовых пар достоверно доказали различие в действии нового антиангинального препарата нонахлазина и широко используемого в клинике курантила. Близнецовый метод все шире применяется в клинической генетике и фармакологии.

Молекулярные основы наследственной патологии Ферментопатии Лечение наследственных болезней Заместительная терапия Витаминотерапия Индукция и ингибиция метаболизма Хирургическое лечение Диетотерапия Эффективность лечения мультифакториальных болезней в зависимости от степени наследственного отягощения у больных Разрабатываемые методы лечения Профилактика врожденной патологии у женщин из групп повышенного риска Клиническая фармакогенетика Наследственные дефекты ферментных систем, выявляемые при применении лекарств Атипичные реакции на лекарства при наследственных болезнях обмена веществ Наследственная обусловленность кинетики и метаболизма лекарств Генетические основы тестирования индивидуальной чувствительности к лекарствам Медико-генетическое консультирование Задачи и показания для проведения консультации Принципы консультирования Этапы консультирования Пренатальная диагностика врожденных пороков развития и наследственных болезней Проблемы медико-психологической реабилитации больных с врожденными болезнями и членов их семей Умственная отсталость Дефекты зрения и слуха Аномалии опорно-двигательного аппарата Приложения Блок информации N 1 - ишемическая болезнь сердца Блок информации N 2 - сахарный диабет Блок информации N 3 - язвенная болезнь Блок информации N 4 - врожденные пороки развития на примере расщелины губы и/или неба Литература [показать]

  1. Андреев И. О фавизме и его этиопатогенезе//Современные проблемы физиологии и патологии детского возраста. - М.: Медицина, 1965. - С. 268-272.
  2. Анненков Г. А. Диетотерапия наследственных болезней обмена веществ//Вопр. питания. - 1975. - № 6. - С. 3-9.
  3. Анненков Г. А. Генная инженерия и проблема лечения наследственных болезней человека//Вестн. АМН СССР. - 1976. - № 12. - С. 85-91.
  4. Барашнев Ю. И., Вельтищев Ю. Е. Наследственные болезни обмена веществ у детей. - Л.: Медицина, 1978. - 319 с.
  5. Барашнев Ю. И., Розова И. Н., Семячкина А. Н. Роль витамина Be в лечение детей с наследственной патологией обмена веществ//Вопр. питания. - 1979. - № 4. - С. 32-40.
  6. Барашнев Ю. И., Руссу Г. С., Казанцева Л. 3. Дифференциальный диагноз врожденных и наследственных заболеваний у детей. - Кишинев: Штиинца, 1984. - 214 с,
  7. Барашнева С. М., Рыбакова Е. П. Практический опыт организации и применения диетического лечения при наследственных энзимопатиях у детей//Педиатрия. - 1977. - № 7. - С. 59-63.
  8. Бочков Н. П. Генетика человека. - М.: Медицина, 1979. - 382 с.
  9. Бочков Н. П., Лильин Е. Т., Мартынова Р. П. Близнецовый метод//БМЭ. - 1976. - Т. 3. - С. 244-247.
  10. Бочков Н. П., Захаров А. Ф., Иванов В. П. Медицинская генетика.- М.: Медицина, 1984. - 366 с.
  11. Бочков Н. П. Профилактика наследственных болезней//Клин. мед. - 1988. - № 5. - С. 7-15.
  12. Буловская Л. Н., Блинова Н. Н., Симонов Н. И. и др. Фенотипические изменения в ацетилировании у опухолевых больных//Вопр. онкол. - 1978. - Т. 24, № 10. - С. 76-79.
  13. Вельтищев Ю. Е. Современные возможности и некоторые перспективы лечения наследственных болезней у детей//Педиатрия. - 1982. - № П. -С. 8-15.
  14. Вельтищев Ю. E., Каганова С. Ю., Таля В. А. Врожденные и наследственные заболевания легких у детей. - М.: Медицина, 1986. - 250 с.
  15. Генетика и медицина: Итоги XIV Международного генетического конгресса/Под ред. Н. П. Бочкова. - М.: Медицина, 1979.- 190 с.
  16. Гиндилис В. М., Финогенова С. А. Наследуемость характеристик пальцевой и ладонной дерматоглифики человека//Генетика.- 1976. - Т. 12, № 8. - С. 139-159.
  17. Гофман-Кадошников П. Б. Биологические основы медицинской генетики. - М.: Медицина, 1965. - 150 с.
  18. Гринберг К. Н. Фармакогенетика//Журн. Всесоюзн. хим. об-ва. - 1970. - Т. 15, № 6. - С. 675-681.
  19. Давиденков С. Н. Эволюционно-генетические проблемы в невропатологии. - Л., 1947. - 382 с.
  20. Давиденкова Е. Ф., Либерман И. С. Клиническая генетика. - Л.: Медицина, 1975. - 431 с.
  21. Давиденкова Е. Ф., Шварц Е. И., Розеберг О. А. Защита биополимеров искусственными и естественными мембранами в проблеме лечения наследственных заболеваний//Вестн. АМН СССР. - 1978.- № 8. - С. 77-83.
  22. Джавадов Р. Ш. К выявлению фавизма в Азербайджанской ССР// Азерб. мед. журн. - 1966. - № 1. - С. 9-12.
  23. Добровская М. П., Санкина Н. В., Яковлева А. А. Состояние процессов ацетилирования и некоторые показатели липидного обмена при инфекционном неспецифическом артрите у детей//Вопр. охр. мат. - 1967. - Т. 12, № 10. - С. 37-39.
  24. Замотаев И. П. Побочное действие лекарств. - М.: ЦОЛИУВ, 1977. - 28 с.
  25. Заславская Р. М., Золотая Р. Д., Лильин Е. Т. Метод близнецовых исследований "контроля по партнеру" в оценке гемодинамических эффектов нонахлазина//Фармакол. и токсикол. - 1981. - № 3.- С. 357.
  26. Игнатова М. С., Вельтищев Ю. Е. Наследственные и врожденные нефропатии у детей. -Л.: Медицина, 1978. - 255 с.
  27. Идельсон Л. И. Нарушения порфиринового обмена в клинике. - М.: Медицина, 1968. - 183 с.
  28. Кабанов М. М. Реабилитация психически больных. - 2-е изд. - Л.: Медицина, 1985. - 216 с.
  29. Калинин В. Н. Достижения в молекулярной генетике//Достижения современной генетики и перспективы их использования в медицине. - Серия: Медицинская генетика и иммунология. - ВНИИМИ, 1987. - № 2. - С. 38-48.
  30. Канаев И. И. Близнецы. Очерки по вопросам многоплодия. - М.-Л.: Изд. АН СССР, 1959.- 381 с.
  31. Козлова С. И. Медико-генетическое консультирование и профилактика наследственных болезней//Профилактика наследственных болезней (сборник трудов)/Под ред. Н. П. Бочкова. - М.: ВОНЦ, 1987.- С. 17-26.
  32. Кошечкин В. А. Выделение генетических факторов риска ишемической болезни сердца и их использование при диспансеризации//Профилактика наследственных болезней (сборник трудов)/Под ред. Н. П. Бочкова.- М.: ВОНЦ, 1987.- С. 103-113.
  33. Краснопольская К. Д. Достижения в биохимической генетике//Достижения современной генетики и перспективы их использования в медицине. - Серия: Медицинская генетика и иммунология. - ВНИИМИ, 1987. - № 2. - С. 29-38.
  34. Ладодо К. С., Барашнева С. М. Успехи диетотерапии в лечении наследственных заболеваний обмена у детей//Вестн. АМН СССР.- 1978. - № 3. - С. 55-60.
  35. Лильин Е. Т., Мексин В. А., Ванюков М. М. Фармакокинетика сульфалена. Связь между скоростью биотрансформации сульфалена и некоторыми фенотипическими признаками//Хим.-фарм. журн. - 1980. - № 7. - С. 12-16.
  36. Лильин Е. Т., Трубников В. И., Ванюков М. М. Введение в современную фармакогенетику. - М.: Медицина, 1984. - 186 с.
  37. Лильин Е. Т., Островская А. А. Влияние наследственного отягощения на течение и эффективность лечения хронического алкоголиз-ма//Сов. мед. - 1988. - № 4. - С. 20-22.
  38. Медведь Р. И., Луганова И. С. Случай острой гемолитической анемии - фавизма в Ленинградской области//Вопр. гематол. и переливания крови. - 1969. -Т. 14, № 10. - С. 54-57.
  39. Методические рекомендации по организации в Белоруссии медико-генетического обследования детей с хромосомными болезнями. - Минск, 1976. - 21с.
  40. Никитин Ю. П., Лисиченко О. В., Коробкова Е. Н. Клинико-генеалогический метод в медицинской генетике. Новосибирск: Наука, 1983. - 100 с.
  41. Основы цитогенетики человека / Под ред. А. А. Прокофьевой-Бельговской. - М.: Медицина, 1969. - 544 с.
  42. Покровский А. А. Метаболические аспекты фармакологии и токсикологии пищи. - М.: Медицина, 1979. - 183 с.
  43. Спиричев В. Б. Наследственные нарушения обмена и функции витаминов//Педиатрия. - 1975. - № 7. - С. 80-86.
  44. Столин В. В. Самосознание личности. - М.: Изд-во МГУ, 1983. - 284 с.
  45. Таболин В. А., Бадалян Л. О. Наследственные болезни у детей. - М.: Медицина, 1971. - 210 с.
  46. Фармакогенетика. Серия технических докладов ВОЗ, № 524. - Женева, 1975. - 52 с.
  47. Холодов Л. Е., Лильин Е. Т.. Мексин В. А., Ванюков М. М. Фармакогенетика сульфалена. II Популяционно-генетический аспект//Генетика. - 1979. - Т. 15, № 12. - С. 2210-2214.
  48. Шварц Е. И. Итоги науки и техники. Генетика человека/Под ред. Н. П. Бочкова. - М.: ВИНИТИ АН ССР, 1979.-Т. 4.- С. 164-224.
  49. Эфроимсон В. П., Блюмина М. Г. Генетика олигофрений, психозов, эпилепсий. - М.: Медицина, 1978. - 343 с.
  50. Asberg М., Evans D.. Sjogvest F. Genetic control of nortriptiline plasma levels in man: a study of proposit with high plasma concentration//J. med. Genet.- 1971. - Vol. 8. - P. 129-135.
  51. Beadl J., Tatum T. Genetic control of biochemical reactions in neurospora//Proc. Nat. Acad. Sci. - 1941, - Vol. 27. - P. 499-506.
  52. Bourne J., Collier H.. Somers G. Succinylcholine muscle relaxant of short action//Lancet.- 1952. - Vol. 1. - P. 1225-1226.
  53. Conen P., Erkman B. Frequency and occurrence of chromosomal syndromes D-trisomy//Amer. J. hum. Genet. - 1966. - Vol. 18. - P. 374-376.
  54. Cooper D., Schmidtke Y. Diagnosis of genetic disease using recombinant DNA//Hum. genet. - 1987. - Vol. 77. - P. 66-75.
  55. Costa Т., Seriver C.. Clulds B. The effect of mendelian disease on human health: a measurement//Amer. J. med. Genet. - 1985. - Vol. 21. - P. 231-242.
  56. Drayer D., Reidenberg M. Clinical consequences of polymorphic acety-lation of basic drugs//Clin. Pharmacol. Ther.- 1977. - Vol. 22, N. 3. - P. 251-253.
  57. Evans D. An improved and simplified method of detecting the acetylator phenotype//J. med. Genet.- 1969. - Vol. 6, N 4. - P. 405-407.
  58. Falconer D. S. Introduction to quantitative genetics. - London: Oliver and Boyd, 1960. - 210 p.
  59. Ford С. E., Hamarton J. L. The chromosomes of man//Acta genet, et statistic, med. - 1956. - Vol. 6, N 2. - P. 264.
  60. Garrod A. E. Inborn errors of metabolism (Croonian Lectures)//Lancet. - 1908. - Vol. 1, N 72. - P. 142-214.
  61. Jacobs P. A., Baikie A. J. Court Brown W. M. et al. Evidence of existence of human "superfemale"//Lancet. - 1959. - Vol. 2. - P. 423.
  62. Kaousdian S., Fabsetr R. Hereditability of clinical chemistries in an older twin//J. Epidemiol. - 1987. - Vol. 4, N 1, -P. 1 - 11.
  63. Karon М., Imach D., Schwartz A. Affective phototherapy in congenital nonobstructive, nonhemolytic jaundice//New Engl. J. Med. - 1970. - Vol. 282. - P. 377-379.
  64. Lejeune J., Lafourcade J., Berger R. et al. Trios cas de deletion du bras court d’une chromosome 5//C. R. Acad. Sci.- 1963. - Vol. 257.- P. 3098-3102.
  65. Mitchcel J. R., Thorgeirsson U. P., Black М., Timbretl J. Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydranize//Clin. Pharmacol. Ther. - 1975. - Vol. 18, N 1. - P. 70-79.
  66. Mitchell R. S., Relmensnider D., Harsch J., Bell J. New information on the clinical implication of individual variation in the metabolic handing of antituberculosis drug, particularly isoniazid//Transactions of Conference of the Chemotherapy of Tuberculosis. - Washington: Veter. Administ., 1958.- Vol. 17.- P. 77-81.
  67. Moore К. L., Barr M. L. Nuclear morphology, according to sex, in human tissues//Acta anat. - 1954. - Vol. 21. - P. 197-208.
  68. Serre H., Simon L., Claustre J. Les urico-frenateurs dans le traitement de la goutte. A propos de 126 cas//Sem. Hop. (Paris).- 1970.- Vol. 46, N 50. - P. 3295-3301.
  69. Simpson N. E., Kalow W. The "silent" gene for serum cholinesterase//Amer. J. hum. Genet. - 1964. - Vol. 16, N 7. - P. 180-182.
  70. Sunahara S., Urano М., Oqawa M. Genetical and geographic studies on isoniazid inactivation//Science. - 1961. - Vol. 134. - P. 1530- 1531.
  71. Tjio J. H., Leva N. A. The chromosome number of men//Hereditas. - 1956.- Vol. 42, N 1, - P. 6.
  72. Tocachara S. Progressive oral gangrene, probably due to a lack of catalase in the blood (acatalasaemia)//Lancet.- 1952. - Vol. 2.- P. 1101.

Это метод изучения генетических закономерностей на близнецах. Впервые он был предложен Ф. Гальтоном в 1875 г. Близнецовый метод дает возможность определить вклад генетических (наследственных) и средовых факторов (климат, питание, обучение, воспитание и др.) в развитии конкретных признаков или заболеваний у человека. При использовании близнецового метода проводится сравнение:

1) монозиготных (однояйцевых) близнецов - МБ с дизиготными (разнояйцевыми) близнецами - ДБ;

2) партнеров в монозиготных парах между собой;

3) данных анализа близнецовой выборки с обшей популяцией.

Монозиготные близнецы образуются из одной зиготы, разделившейся на стадии дробления на две (или более) части. С генетической точки зрения они идентичны, т.е. обладают одинаковыми генотипами. Монозиготные близнецы всегда одного пола. Имеют одну плаценту.

Особую группу среди МБ составляют необычные типы близнецов: двухголовые (как правило, нежизнеспособные), каспофаги ("сиамские близнецы"). Наиболее известный случай - родившиеся в 1811 г. в Сиаме (ныне Таиланд) сиамские близнецы - Чапг и Эиг. Они прожили 63 года, были женаты на сестрах-близнецах; Чанг произвел на свет 10, а Энг - 12 детей. Когда от бронхита умер Чанг, спустя 2 часа умер и Энг. Их связывала тканевая перемычка шириной около 10 см от грудины до пупка. Позднее было установлено, что соединявшая их перемычка содержала печеночную ткань, связывающую две печени. Любая хирургическая попытка разделить братьев вряд ли в то время была бы успешной. В настоящее время разъединяют и более сложные связи между близнецами.

Дизиготные близнецы развиваются в том случае, если одновременно две яйцеклетки оплодотворены двумя сперматозоидами. Естественно, дизиготные близнецы имеют различные генотипы. Они сходны между собой не более, чем братья и сестры, т.к. имеют около 50 % идентичных генов.

Общая частота рождения близнецов составляет примерно 1 %, из них около 1/3 приходится на монозиготных близнецов. Известно, что число рождений монозиготных близнецов сходно в разных популяциях, в то время как для дизиготных эта цифра существенно различается. Например, в США дизиготные близнецы рождаются чаще среди негров, чем белых. В Европе частота появления дизиготных близнецов составляет 8 на 1000 рождений. Однако в отдельных популяциях их бывает больше. Самая низкая частота рождения близнецов присуща монголоидным популяциям, особенно в Японии. Отмечается, что частота врожденных уродств у близнецов, как правило, выше, чем у одиночно рожденных. Полагают, что многоплодие генети­чески обусловлено. Однако это спра­ведливо лишь для дизиготных близ­нецов. Факторы, влияющие на часто­ту рождения близнецов, в настоящее время мало изучены. Есть данные, по­казывающие, что вероятность рожде­ния дизиготных близнецов повыша­ется с увеличением возраста матери, а так же порядкового номера рождения. Влияние возраста матери объясняет­ся, вероятно, повышением уровня гонадотропина, что приводит к учаще­нию полиовуляцни. Имеются также данные о снижении частоты рожде­ния близнецов почти во всех индуст­риальных странах.

Близнецовый метод включает в себя д иагностику зиготности близнецов.В настоящее время используются следу­ющие методы для: ее установления.

1. Полисимптомный метод. Он за­ключается в сравнении пары близне­цов по внешним признакам (форма бровей, носа, губ, ушных раковин, цвет волос, глаз и.т.п.). Несмотря на очевидное удобство, это -метол до известной степени субъективный и может давать ошибки.

2. Иммуногенетический метод. Более сложный, он основывается на анализе групп крови, белков сыворотки крови лейкоцитарных антигенов, чувстви­тельности к фенилтиокарбамиду и др, Если у обоих близнецов по этим при­знакам различий нет, их считают моно­зиготными.

Для монозиготных близнецов веро­ятность сходства по всем показателям равна.

3. Достоверным критерием зиготности близнецов является приживляемость

кусочков кожи. Установлено, что у ди­зиготных близнецов такая пересадка всегда заканчивается отторжением, в то время как у монозиготных пар отмеча­ется высокая приживляемость транс­плантантов.

4. Метод дерматоглифики заключает­ся в изучении папиллярных узоров пальцев, ладоней и стоп. Эти признаки строго индивидуальны и не изменяются в течение всей жизни человека. Не слу­чайно, что эти показатели используются в криминалистике и в судебной медици­не для опознания личности и установ­ления отцовства. Сходство дерматогли-фических показателей у монозиготных близнецов значительно выше, чем у ди­зиготных.

5. Близнецовый метод вкл ючает так­же сопоставление групп моно- и дизи­готных близнецов по изучаемому при­знаку.

Если какой-либо признак встречает­ся у обоих близнецов одной пары, то она называется конкордантной, если же у одного из них, то пара близнецов назы­вается дискордантной (конкордантность - степень сходства, дискордантность - степень различия).

При сопоставлении моно- и дизигот­ных близнецов определяют коэффици­ент парной конкордантностн, указыва­ющий на долю близнецовых пар. в кото­рых изучаемый признак проявился у обоих партнеров. Коэффициент кон­кордантностн (К п) выражается в долях единицы или в процентах и определяем­ся по формуле:

Кп = С \ С+Д где С - число конкордантных пар. Д - число дискордантных пар.

Сравнение парной конкордантностн у моно- и дизиготных близнецов дает ответ о соотносительной роли наследственности и среды в развитии того или иного признака или болезни. При этом исходят из предположения о том, что степень конкордантностн достоверно выше у монозиготных, чем у дизигот­ных близнецов, если наследственные факторы имеют доминирующую роль в развитии признака.

Если значение коэффициента кон­кордантностн примерно близко у монозиготных и дизиготных близнецов, счи­тают, что развитие признака определя­ется главным образом негенетическими факторами, т.е. условиями среды.

Если в развитии изучаемого призна­ка участвуют как генетические, так и негенетические факторы, то у монозигот­ных близнецов наблюдаются опреде­ленные внутрипарные различия. При этом различия между моно- и дизиготными близнецами по степени конкор­дантностн будут уменьшаться. В этом случае считают, что к развитию призна­ка имеется наследственная предраспо­ложенность.

Для количественной оценки роли на­следственности и среды в развитии того или иного признака используют различ­ные формулы.

Чаще всего пользуются коэффициентом наследуемости, кото­рый вычисляется по формуле:

Н = КМБ - КДБ (в процентах) или (в долях единицы),

где Н - коэф­фициент наследуемости. К - коэффи­циент парной конкордантностн в группе монозиготных (МБ) или дизи­готных (ДБ) близнецов.

В зависимости от значения Н судят о влиянии генетических и средовых факторов на развитие признака. На­пример, если значение Н близко к 0, считают, что развитие признака обус­ловлено только факторами внешней среды. При значении Н от 1 до 0,7 - наследственные факторы имеют доми­нирующее значение в развитии при­знака или болезни – это группы крови, цвет глаз, резус – фактор, а среднее значение Н от 0,4 до 0,7 свидетельствует о том, что признак развивается под действи­ем факторов внешней среды при нали­чии генетической предрасположеннос­ти.

Например, конкордантность МБ по заболеваемости шизофрении равна 70%, а у ДБ – 13%. Вычисляем по формуле Н = КМБ – КДБ / 100 – КДБ = 70 -13 \ 100 – 13 = 0,65 или 65 %. В данном случае преобладают генетические факторы, но существенную роль играют и условия среды.

С помощью близнецового метода было выявлено значение генотипа и среды в патогенезе многих инфекци­онных болезней. Так, при заболева­нии корью и коклюшем ведущее зна­чение имеют инфекционные факто­ры, а при туберкулезной инфекции - существенное влияние оказывает ге­нотип. Исследования, проводимые на близнецах, помогут ответить на такие вопросы как: влияние наследствен­ных и средовых факторов на продол­жительность жизни человека, разви­тие одаренности, чувствительность к лекарственным препаратам. В клинической фармакологии нет более эффективного метода способа оценки действия новых лекарственных препаратов и схем лечения, чем сравнение терапевтических результатов на однояйцовых близнецах. Также оценивают эффективность разных педагогических приёмов в процессе обучения.

Биохимические методы

Биохимические показатели отражают сущность болезни более адекватно, чем клинические симптомы. Эти методы направлены на выявление биохимического фенотипа организма. Им принадлежит ведущая роль в диагностике моногенных наследственных болезней. Принципы биохимической диагностики менялись на разных этапах развития генетики:

    до 50-х годов – искали метаболиты в моче (алкаптонурия, фенилкетонурия);

    50- 70-е – выявление энзимопатий и метаболитов;

    с 70-х – белки.

В настоящее время все эти объекты являются предметом биохимических исследований.

Так как биохимических методов очень много, поэтому при их использовании дол-жна быть определенная система  схема обследования строится на:

    клинической картине болезни;

    генеалогических сведениях;

    поэтапном исключении определенных классов болезней (просеивающий метод).

Биохимические методы многоступенчаты.

Близнецóвый мéтод - один из методов исследования в генетике , который заключается в сопоставлении особенностей членов близнецовой пары, позволяющий определить степень влияния наследственных факторов и среды на формирование качеств человека . Термин впервые был предложен Фрэнсисом Гальтоном .

Энциклопедичный YouTube

    1 / 3

    ✪ Близнецовый метод генетики

    ✪ Урок биологии №52. Методы генетических исследований.

    ✪ Методы генетики в лучшем изложении

    Субтитры

Биология близнецовости

В природе у большинства млекопитающих обычно появляется более одного детеныша в помете, так как зачастую оплодотворяется сразу несколько яйцеклеток . С другой стороны у высших приматов и человека обычно рождаются только один детеныш [ ] . Если же оплодотворяется не одна, а две или более яйцеклеток, то на свет появляются дизиготные близнецы (ДЗ). По своей генетической конституции дизиготы не отличаются от обычных братьев и сестер, но они имеют 50% общих генов . В ряде случаев многоплодная беременность приводит к рождению монозиготных близнецов (МЗ). Монозиготы развиваются из одной зиготы , которая на определенной стадии делиться на два самостоятельных организма. Монозиготы всегда одного пола и имеют 100% общих генов. МЗ близнецы получают абсолютно одинаковый набор генов, в следствие чего организмы приобретают практически идентичную внешность. Разнополые близнецы всегда дизиготные, и они рождаются примерно в два раза чаще, чем МЗ близнецы. Общее количество близнецов во всем мире на 2008 год составило примерно 80 миллионов .

Концепция близнецового метода

Основы метода были заложены Г. Сименсом в 1924 году . Окончательный вариант близнецового метода предложил Гальтон. Он разработал метод диагностики зиготности и предложил исследовать не только МЗ пары, но и ДЗ как контрольные. В классическом варианте близнецовый метод предполагает равенство сред для обеих пар МЗ и ДЗ близнецов и пренебрегает разницей МЗ и ДЗ близнецов.

Влияние среды на близнецов

Средовые условия способны увеличивать внутрипарное сходство МЗ близнецов: их часто одинаково одевают, дают похожие имена, окружающие намеренно подчеркивают идентичность . Все это приводит к дополнительному сходству между близнецами. Обратная ситуация наблюдается в паре ДЗ близнецов, где средовые условия уменьшают их внутрипарное сходство, так как родители могут акцентировать внимание на непохожести детей, а так же сами близнецы могут стремиться к диссимиляции . [ ], а также наследственные причины ряда заболеваний.

  • Исследование одиночных близнецов - сопоставляются особенности развития одиночнорожденных детей и близнеца, чей партнер умер при рождении (пленительного развития).
  • Сопоставление близнецов с неблизнецами.
  • Метод разлученных близнецов - сравнивается внутрипарное сходство близнецов, разлученных в раннем возрасте и никогда не встречавшихся после.
  • Метод частично разлученных близнецов - сравнивается внутрипарное сходство МЗ и ДЗ близнецов, живущих врозь какое-то время.
  • Это метод изучения генетических закономерностей на близнецах. Впервые он был предложен Ф. Гальтоном в 1875 г. Близнецовый метод дает возможность определить вклад генетических (наследственных) и средовых факторов (климат, питание, обучение, воспитание и др.) в развитии конкретных признаков или заболеваний у человека. При использовании близнецового метода проводится сравнение:

    1) монозиготных (однояйцевых) близнецов - МБ с дизиготными (разнояйцевыми) близнецами - ДБ;

    2) партнеров в монозиготных парах между собой;

    3) данных анализа близнецовой выборки с обшей популяцией.

    Монозиготные близнецы образуются из одной зиготы, разделившейся на стадии дробления на две (или более) части. С генетической точки зрения они идентичны, т.е. обладают одинаковыми генотипами. Монозиготные близнецы всегда одного пола. Имеют одну плаценту.

    Особую группу среди МБ составляют необычные типы близнецов: двухголовые (как правило, нежизнеспособные), каспофаги ("сиамские близнецы"). Наиболее известный случай - родившиеся в 1811 г. в Сиаме (ныне Таиланд) сиамские близнецы - Чапг и Эиг. Они прожили 63 года, были женаты на сестрах-близнецах; Чанг произвел на свет 10, а Энг - 12 детей. Когда от бронхита умер Чанг, спустя 2 часа умер и Энг. Их связывала тканевая перемычка шириной около 10 см от грудины до пупка. Позднее было установлено, что соединявшая их перемычка содержала печеночную ткань, связывающую две печени. Любая хирургическая попытка разделить братьев вряд ли в то время была бы успешной. В настоящее время разъединяют и более сложные связи между близнецами.

    Дизиготные близнецы развиваются в том случае, если одновременно две яйцеклетки оплодотворены двумя сперматозоидами. Естественно, дизиготные близнецы имеют различные генотипы. Они сходны между собой не более, чем братья и сестры, т.к. имеют около 50 % идентичных генов.

    Общая частота рождения близнецов составляет примерно 1 %, из них около 1/3 приходится на монозиготных близнецов. Известно, что число рождений монозиготных близнецов сходно в разных популяциях, в то время как для дизиготных эта цифра существенно различается. Например, в США дизиготные близнецы рождаются чаще среди негров, чем белых. В Европе частота появления дизиготных близнецов составляет 8 на 1000 рождений. Однако в отдельных популяциях их бывает больше. Самая низкая частота рождения близнецов присуща монголоидным популяциям, особенно в Японии. Отмечается, что частота врожденных уродств у близнецов, как правило, выше, чем у одиночно рожденных. Полагают, что многоплодие генети­чески обусловлено. Однако это спра­ведливо лишь для дизиготных близ­нецов. Факторы, влияющие на часто­ту рождения близнецов, в настоящее время мало изучены. Есть данные, по­казывающие, что вероятность рожде­ния дизиготных близнецов повыша­ется с увеличением возраста матери, а так же порядкового номера рождения. Влияние возраста матери объясняет­ся, вероятно, повышением уровня гонадотропина, что приводит к учаще­нию полиовуляцни. Имеются также данные о снижении частоты рожде­ния близнецов почти во всех индуст­риальных странах.


    Близнецовый метод включает в себя д иагностику зиготности близнецов. В настоящее время используются следу­ющие методы для: ее установления.

    1. Полисимптомный метод. Он за­ключается в сравнении пары близне­цов по внешним признакам (форма бровей, носа, губ, ушных раковин, цвет волос, глаз и.т.п.). Несмотря на очевидное удобство, это -метол до известной степени субъективный и может давать ошибки.

    2. Иммуногенетический метод. Более сложный, он основывается на анализе групп крови, белков сыворотки крови лейкоцитарных антигенов, чувстви­тельности к фенилтиокарбамиду и др, Если у обоих близнецов по этим при­знакам различий нет, их считают моно­зиготными.

    Для монозиготных близнецов веро­ятность сходства по всем показателям равна.

    3. Достоверным критерием зиготности близнецов является приживляемость

    кусочков кожи. Установлено, что у ди­зиготных близнецов такая пересадка всегда заканчивается отторжением, в то время как у монозиготных пар отмеча­ется высокая приживляемость транс­плантантов.

    4. Метод дерматоглифики заключает­ся в изучении папиллярных узоров пальцев, ладоней и стоп. Эти признаки строго индивидуальны и не изменяются в течение всей жизни человека. Не слу­чайно, что эти показатели используются в криминалистике и в судебной медици­не для опознания личности и установ­ления отцовства. Сходство дерматогли-фических показателей у монозиготных близнецов значительно выше, чем у ди­зиготных.

    5. Близнецовый метод вкл ючает так­же сопоставление групп моно- и дизи­готных близнецов по изучаемому при­знаку.

    Если какой-либо признак встречает­ся у обоих близнецов одной пары, то она называется конкордантной, если же у одного из них, то пара близнецов назы­вается дискордантной (конкордантность - степень сходства, дискордантность - степень различия).

    При сопоставлении моно- и дизигот­ных близнецов определяют коэффици­ент парной конкордантностн, указыва­ющий на долю близнецовых пар. в кото­рых изучаемый признак проявился у обоих партнеров. Коэффициент кон­кордантностн (К п) выражается в долях единицы или в процентах и определяем­ся по формуле:

    Кп = С \ С+Д где С - число конкордантных пар. Д - число дискордантных пар.

    Сравнение парной конкордантностн у моно- и дизиготных близнецов дает ответ о соотносительной роли наследственности и среды в развитии того или иного признака или болезни. При этом исходят из предположения о том, что степень конкордантностн достоверно выше у монозиготных, чем у дизигот­ных близнецов, если наследственные факторы имеют доминирующую роль в развитии признака.

    Если значение коэффициента кон­кордантностн примерно близко у монозиготных и дизиготных близнецов, счи­тают, что развитие признака определя­ется главным образом негенетическими факторами, т.е. условиями среды.

    Если в развитии изучаемого призна­ка участвуют как генетические, так и негенетические факторы, то у монозигот­ных близнецов наблюдаются опреде­ленные внутрипарные различия. При этом различия между моно- и дизиготными близнецами по степени конкор­дантностн будут уменьшаться. В этом случае считают, что к развитию призна­ка имеется наследственная предраспо­ложенность.

    Для количественной оценки роли на­следственности и среды в развитии того или иного признака используют различ­ные формулы.

    Чаще всего пользуются коэффициентом наследуемости, кото­рый вычисляется по формуле:

    Н = КМБ - КДБ (в процентах) или (в долях единицы),

    где Н - коэф­фициент наследуемости. К - коэффи­циент парной конкордантностн в группе монозиготных (МБ) или дизи­готных (ДБ) близнецов.

    В зависимости от значения Н судят о влиянии генетических и средовых факторов на развитие признака. На­пример, если значение Н близко к 0, считают, что развитие признака обус­ловлено только факторами внешней среды. При значении Н от 1 до 0,7 - наследственные факторы имеют доми­нирующее значение в развитии при­знака или болезни – это группы крови, цвет глаз, резус – фактор, а среднее значение Н от 0,4 до 0,7 свидетельствует о том, что признак развивается под действи­ем факторов внешней среды при нали­чии генетической предрасположеннос­ти.

    Например, конкордантность МБ по заболеваемости шизофрении равна 70%, а у ДБ – 13%. Вычисляем по формуле Н = КМБ – КДБ / 100 – КДБ = 70 -13 \ 100 – 13 = 0,65 или 65 %. В данном случае преобладают генетические факторы, но существенную роль играют и условия среды.

    С помощью близнецового метода было выявлено значение генотипа и среды в патогенезе многих инфекци­онных болезней. Так, при заболева­нии корью и коклюшем ведущее зна­чение имеют инфекционные факто­ры, а при туберкулезной инфекции - существенное влияние оказывает ге­нотип. Исследования, проводимые на близнецах, помогут ответить на такие вопросы как: влияние наследствен­ных и средовых факторов на продол­жительность жизни человека, разви­тие одаренности, чувствительность к лекарственным препаратам. В клинической фармакологии нет более эффективного метода способа оценки действия новых лекарственных препаратов и схем лечения, чем сравнение терапевтических результатов на однояйцовых близнецах. Также оценивают эффективность разных педагогических приёмов в процессе обучения.

    Биохимические методы

    Биохимические показатели отражают сущность болезни более адекватно, чем клинические симптомы. Эти методы направлены на выявление биохимического фенотипа организма. Им принадлежит ведущая роль в диагностике моногенных наследственных болезней. Принципы биохимической диагностики менялись на разных этапах развития генетики:

    • до 50-х годов – искали метаболиты в моче (алкаптонурия, фенилкетонурия);
    • 50- 70-е – выявление энзимопатий и метаболитов;
    • с 70-х – белки.

    В настоящее время все эти объекты являются предметом биохимических исследований.

    Так как биохимических методов очень много, поэтому при их использовании дол-жна быть определенная система Þ схема обследования строится на:

    · клинической картине болезни;

    · генеалогических сведениях;

    · поэтапном исключении определенных классов болезней (просеивающий метод).

    Биохимические методы многоступенчаты.

    Объекты биохимических исследований:

    ü плазма и сыворотка крови;

    ü форменные элементы крови;

    ü культуры клеток (фибробласты, лимфоциты).

    При использовании просеивающего метода в биохимической диагностике выделяют уровни: первичный и уточняющий.

    Цель первичной диагностики – выявление здоровых индивидов и отбор индивидов для последующей диагностики. На этом этапе используется моча и небольшое количество крови.

    Программы первичной биохимической диагностики бывают массовыми и селективными.

    Метод введен в медицинскую практику Ф. Гальтоном в 1876 г. Он позволяет определить роль генотипа и среды в прояв­лении признаков. Суть метода заключается в сравнении проявления признаков в разных группах близнецов при учете сходства и различия их генотипов.

    Различают моно- и дизиготных близнецов. Монози­готные (однояйцевые) близнецы развиваются из одной оплодотворенной яйцеклетки. Монозиготные близнецы имеют совершенно одинаковый генотип и, если они отли­чаются фенотипически, то это обусловлено воздействием факторов внешней среды.

    Дизиготные (двуяйцевые) близнецы развиваются пос­ле оплодотворения сперматозоидами нескольких одновре­менно созревших яйцеклеток. Близнецы будут иметь раз­ный генотип и их фенотипические различия обусловлены как генотипом, так и факторами внешней среды.

    Монозиготные близнецы имеют большую степень сход­ства по признакам, которые определяются в основном генотипом. Например, монозиготные близнецы всегда од­нополы, у них одинаковые группы крови по разным сис­темам (АВО, RH, МN и др.)» одинаковый цвет глаз, одно­типны дерматоглифические показатели на пальцах и ла­донях и др. Эти фенотипическке признаки и используют­ся в качестве критериев диагностики зиготности близ­нецов.

    Процент сходства группы близнецов по изучаемому признаку называется конкордантностью, а процент раз­личия – дискордантностью (рис.11.6). Так как монозиготные близнецы имеют одинаковый генотип, то конкордантность их выше, чем у дизиготных.

    Генетическая предрасположенность к наследственным и многофакторным заболеваниям определяется с помощью близнецового метода следующим образом:

        Если заболевание обусловлено только наследственными факторами, то КМБ=100%, КДБ=25-50%.

        При МФЗ – низкий уровень конкордантности для МЗБ и ДЗБ.

        КМБ=КДБ – ведущая роль среды.

    Для оценки роли наследственности и среды в разви­тии того или иного признака используют формулу Хольцингера (рис.11.7):

    где Н – доля наследственности,

    C MZ – конкордан­тность монозиготных близнецов,

    C DZ – конкордант­ность дизиготных близнецов.

    При Н=100% признак полностью определяется наследственным компонентом. При Н=0 – средовым. При Н=50% - одинакова роль наследственности и среды (МФЗ).

    Биохимический метод

    Основан на изучении активности ферментных систем (либо по активности са­мого фермента, либо по количеству конечных продуктов реакции, катализируемой данным ферментом). Они позволяют выявлять генные мутации – причины болезней обмена веществ (например, фенилкетонурия, серповид­но-клеточная анемия).

    С помощью биохимических нагрузочных тестов мож­но выявлять гетерозиготных носителей патологических генов, например, фенилкетонурии. Исследуемому челове­ку вводят внутривенно определенное количество амино­кислоты фенилаланина и через равные промежутки вре­мени определяют его концентрацию в крови. Если чело­век гомозиготен по доминантному гену (АА), то концент­рация фенилаланина в крови довольно быстро возвраща­ется к контрольному уровню (определяется до введения фенилаланина), а если он гетерозиготен (Аа), то сниже­ние концентрации фенилаланина идет вдвое медленнее.

    Аналогично проводятся тесты, выявляющие предрас­положенность к сахарному диабету, гипертонии и др. бо­лезням.