Параметры: цветовой тон, насыщенность, яркость. Теория цвета

Итак, коротко для справки: изначально свет, как электромагнитное излучение с определённой длиной волны - белый. Но при пропускании его через призму он раскладывается на следующие составляющие его видимые цвета (видимый спектр): к расный, о ранжевый, ж ёлтый, з елёный, г олубой, с иний, ф иолетовый (к аждый о хотник ж елает з нать г де с идит ф азан).

Почему я выделил "видимые "? Особенности строения человеческого глаза позволяют нам различать только эти цвета, оставляя вне поля нашего зрения ультрафиолетовое и инфракрасное излучение. Способность человеческого глаза воспринимать цвет напрямую зависит от способности материи окружающего нас мира поглощать одни световые волны и отражать другие. Почему красное яблоко красное? Потому что поверхность яблока, имея определённый био-химический состав, поглощает все волны видимого спектра, за исключением красного, который от поверхности отражается и, попадая в наш глаз в виде электромагнитного излучения определённой частоты, воспринимается рецепторами и распознаётся мозгом как красный цвет. С зелёным яблоком или оранжевым апельсином ситуация аналогичная, как и со всей материей, которая нас окружает.

Рецепторы человеческого глаза наиболее чувствительны к синему, зелёному и красному цвету видимого спектра. На сегодня существует около 150000 цветовых тонов и оттенков. При этом человек может различать порядка 100 оттенков по цветовому тону, около 500 оттенков серого. Естественно, художники, дизайнеры и т.д. обладают более широким диапазоном цветовосприятия. Все цвета, расположенные в видимом спектре, называются хроматическими.

видимый спектр хроматических цветов

Наряду с этим очевидным является и тот факт, что помимо "цветных" цветов мы также распознаём и "не цветные", "чёрно-белые" цвета. Так вот, оттенки серого цвета в диапазоне "белый - чёрный" называются ахроматическими (бесцветными) из-за отсутствия в них конкретного цветового тона (оттенка видимого спектра). Наиболее ярким ахроматическим цветом является белый, наиболее тёмным - чёрный.

ахроматические цвета

Далее, для правильного понимания терминологии и грамотного использования теоретических знаний на практике необходимо найти различия в понятиях "тон" и "оттенок". Так вот, цветовой тон - характеристика цвета, определяющая его положение в спектре. Синий цвет - это тон, красный цвет - это тоже тон. А оттенок - это разновидность одного цвета, отличающаяся от него как яркостью, светлотой и насыщенностью, так и наличием добавочного цвета, проявляющегося на фоне основного. Светло-голубой и тёмно-голубой - оттенки голубого по насыщенности, а голубовато-зелёный (бирюзовый) - по наличию в голубом добавочного зелёного цвета.

Что такое яркость цвета ? Это характеристика цвета, напрямую зависящая от степени освещённости объекта и характеризующая плотность светового потока, направленного в сторону наблюдателя. Говоря проще, если при всех остальных равных условиях, один и тот же объект последовательно осветить источниками света разной мощности, пропорционально поступающему свету отражённый от объекта свет будет также разной мощности. В итоге одно и то же красное яблоко при ярком свете будет выглядеть ярко красным, а при отсутствии света мы его не увидим вообще. Особенность яркости цвета заключается в том, что при её снижении любой цвет стремится к чёрному.

И ещё: при одинаковых условиях освещённости один и тот же цвет может отличаться яркостью благодаря способности отражать (или поглощать) поступающий свет. Глянцевый чёрный будет ярче, чем матовый чёрный именно потому, что глянец больше отражает поступающий свет, а матовый - больше поглощает.

Светлота, светлота… Как характеристика цвета - существует. Как точное определение - скорее нет. Следуя одним источникам, светлота - степень близости цвета к белому. Согласно другим источникам - субъективная яркость участка изображения, отнесённая к субъективной яркости поверхности, воспринимаемой человеком как белая. Третьи источники относят понятия яркость и светлость цвета к синонимам, что не лишено логики: если при уменьшении яркости цвет стремится к чёрному (становится темнее), то при увеличении яркости цвет будет стремиться к белому (становится светлее).

На практике так и происходит. Во время фото или видео съёмки недоэкспонированные (недостаточно света) объекты в кадре становятся чёрным пятном, а переэкспонированные (переизбыток света) - белым.

Аналогичная ситуация касается и терминов "насыщенность" и "интенсивность" цвета, когда в некоторых источниках говорится, что "насыщенность цвета - это интенсивность …. и т.д. и т.п". На самом деле это абсолютно разные характеристики. Насыщенность - "глубина" цвета, выраженная в степени отличия хроматического цвета от одинакового с ним по светлоте серого цвета. При уменьшении насыщенности каждый хроматический цвет приближается к серому.

Интенсивность - преобладание какого-либо тона по сравнению с другими (в пейзаже осеннего леса оранжевый тон будет преобладающим).

Такая "подмена" понятий происходит, скорее всего, по одной причине: грань между яркостью и светлостью, насыщенностью и интенсивностью цвета настолько тонкая, насколько субъективно само понятие цвет.

Из определений основных характеристик цвета можно выделить следующую закономерность: на цветопередачу (и соответственно на цветовосприятие) хроматических цветов большое влияние оказывают ахроматические цвета. Они не только помогают формировать оттенки, но и делают цвет светлым или темным, насыщенным или блеклым.

Как эти знания могут помочь фотографу или видеографу? Ну во-первых, никакой фотоаппарат или видеокамера не способны передать цвет так, как его воспринимает человек. И чтобы в дальнейшем при пост-обработке фото или видео материала достичь гармонии в изображении или приблизить изображение к реальности, необходимо умело манипулировать яркостью, светлостью и насыщенностью цвета, чтобы результат удовлетворил или Вас, как художника, или окружающих, как зрителей. Не зря в кинопроизводстве существует профессия колорист (в фотографии эту функцию обычно выполняет сам фотограф). Человек, обладающий знаниями о цвете, путём цветокоррекции доводит снятый и смонтированный материал до такого состояния, когда цветовое решение фильма просто заставляет зрителя изумляться и восхищаться одновременно. Во-вторых, в колористике все эти особенности цвета переплетаются довольно тонко и в различной последовательности, позволяя не только расширить возможности цветопередачи, но и добиться каких-то индивидуальных результатов. Если же этими инструментами пользоваться безграмотно, сложно будет найти поклонников своего творчества.

И на этой позитивной ноте мы наконец-то подошли к колористике.

Колористика, как наука о цвете, в своих законах опирается именно на спектр видимого излучения, который трудами исследователей 17-20 вв. из линейного представления (иллюстрация выше) был трансформирован в форму хроматического круга.

Что нам позволяет понять хроматический круг?

1. Основных (базовых, первичных, чистых) цветов всего 3:

Красный

Жёлтый

Синий

2. Составных цветов второго порядка (вторичных) тоже 3:

Зелёный

Оранжевый

Фиолетовый

Мало того, что в хроматическом круге они расположены напротив основных цветов, но и получаются они путём смешивания основных цветов друг с другом (зелёный = синий + жёлтый, оранжевый = жёлтый + красный, фиолетовый = красный + синий).

3. Составных цветов третьего порядка (третичных) 6:

Жёлто-оранжевый

Красно-оранжевый

Красно-фиолетовый

Сине-фиолетовый

Сине-зелёный

Жёлто-зелёный

Составные цвета третьего порядка получаются путём смешивания основных с составными цветами второго порядка.

Именно месторасположение цвета в двенадцатичастном цветовом круге позволяет понять, какие цвета и как могут сочетаться друг с другом.

ПРОДОЛЖЕНИЕ -

  1. Что такое цвет?
  2. Физика цвета
  3. Основные цвета
  4. Теплые и холодные цвета

Что такое цвет?

Цвет – это волны определенного рода электромагнитной энергии, которые после восприятия глазом и мозгом человека преобразуются в цветовые ощущения (см. физика цвета).

Цвет доступен не всем животным на Земле . Полное цветное зрение есть у птиц и приматов, остальные в лучшем случае различают некоторые оттенки, в основном красный.

Появление цветного зрения связано с образом питания. Считается, что у приматов оно появилось в процессе поиска съедобных листьев и зрелых плодов. В дальнейшей эволюции цвет стал помогать человеку определять опасность, запоминать местность, различать растения, определять по цвету облаков надвигающуюся погоду.

Цвет, как носитель информации, в жизни человека стал играть огромную роль.

Цвет – как символ . Информация о предметах или явлениях, окрашенных в определенный цвет, объединились в образ, который сделал из цвета символ. Этот символ меняет свое значение от ситуации, но всегда понятен (он может быть не осознан, но принят подсознанием).
Пример: красный в «сердечке» - символ люби. Красный цвет светофора – предупреждение об опасности.

С помощью цветовых образов можно донести до читателя больше информации. Это лингвистическое понимание цвета .
Пример: Надел я черный цвет,
В душе надежды нет,
Постыл мне белый свет.

Цвет вызывает эстетическое удовольствие или неудовольствие .
Пример: Эстетика выражается в искусстве, хоть оно состоит не только из цвета, но и формы и сюжета. Вы, не зная почему, скажете, что это красиво, а это искусством назвать нельзя.

Цвет влияет на нашу нервную систему, заставляет учащается или замедляться сердцебиение, влияет на обмен веществ и т. д.
Например: в комнате, выкрашенной в синий цвет кажется прохладней, чем есть на самом деле. Потому что, синий замедляет наше сердцебиение, погружает нас в покой.

С каждым столетием цвет все больше и больше несет для нас информации, и теперь есть такое понятие как «цвет культуры», цвет в политических движении и обществ.

Физика цвета

Как такового цвета в природе не существует. Цвет - продукт умственной переработки информации, которая поступает через глаз в виде световой волны.

Человек может отличить до 100 000 оттенков: волны от 400 до 700 миллимикрон. Вне различимых спектрах лежат инфракрасный (с длинной волны более 700 н/м) и ультрафиолет (с длинной волны меньше 400 н/м).

В 1676 г И. Ньютон провел эксперимент по расщеплению светового луча с помощью призмы. В результате он получил 7 явно различимых цветов спектра.

Эти цвета часто сокращают до 3 основных (см. основные цвета)

Волны имеют не только длину, но и частоту колебаний. Эти величины взаимосвязаны, поэтому задать определенную волну можно либо длиной, либо частотой колебаний.

Получив непрерывный спектр, Ньютон пропустил его через собирающую линзу и получил белый цвет. Тем самым доказав:

1 Белый цвет состоит из всех цветов.
2 Для цветовых волн действует принцип сложения
3 Отсутствие света ведет к отсутствию цвета.
4 Черный – это полное отсутствие цвета.

В ходе экспериментов было выяснено, что сами предметы цвета не имеют. Освещенные светом, они отражают часть световых волн, а часть поглощают, в зависимости от своих физических свойств. Отраженные световые волны и будут цветом предмета.
(Например, если на синюю кружку посветить светом, пропущенным через красный фильтр, то мы увидим, что кружка черная, потому что синие волны блокируются красным фильтром, а кружка может отражать только синие волны)

Получается, что ценность краски в ее физических свойствах, но если вы решите смешать синий, желтый и красный (потому что остальные цвета можно получить из комбинации основных цветов (см. основные цвета)), то получите не белый цвет (как если бы вы смешали волны), а неопределенно темный цвет, так как в данном случае действует принцип вычитания.

Принцип вычитания говорит: любое смешивание ведет к отражению волны с меньшей длиной.
Если смешать желтый и красный, то получится оранжевый, длина волны которого меньше длины волны красного. При смешивании красного, желтого и синего получается неопределенно темный цвет – отражение, стремящееся к минимальной воспринимаемой волне.

Этим свойством объясняется маркость белого цвета. Белый цвет – отражение всех цветовых волн, нанесение любого вещества ведет к уменьшению отражения, и цвет становится не чисто белым.

Черный же цвет наоборот. Чтобы выделиться на нем, нужно повысить длину волны и количество отражений, а смешивание ведет на понижение волны.

Основные цвета

Основные цвета – это цвета, с помощью которых можно получить все остальные.

Это КРАСНЫЙ ЖЕЛТЫЙ СИНИЙ

Если смешать между собой красные, синие и желтые цветовые волны, то получится белый цвет.

Если же смешать красную, желтую и синюю краски, то получится темно-неопределенный цвет (см. физика цвета).

Эти цвета разные по светлоте, в которой яркость на пике. Если их перевести в черно белый формат, то вы отчетливо увидите контраст.

Сложно представить себе яркий темно - желтый цвет, как яркий светло - красный. За счет яркости в разных диапазонах светлоты создается огромная гамма промежуточных ярких цветов.

КРАСНЫЙ+ЖЕЛТЫЙ=ОРАНЖЕВЫЙ
ЖЕЛТЫЙ+СИНИЙ=ЗЕЛЕНЫЙ
СИНИЙ+КРАСНЫЙ=ФИОЛЕТОВЫЙ

Цветовой тон, яркость, насыщенность, светлота

Тон – это основная характеристика, по которой называют цвета.

Например, красный или желтый. Существует обширная палитра цветов, основой которой являются 3 цвета (синий, желтый и красный), они, в свою очередь, являются сокращением от 7 основных цветов радуги (потому что, смешивая основные цвета можно получить недостающие 4)

Тона получают смешиванием в разных пропорциях основных цветов.

Тона и оттенки – синонимы.

Полутонами называется незначительное, но уловимое глазом изменение в цвете.

Яркость - характеристика восприятия. Она определяется нашей скоростью выделения одного цвета на фоне других.

Яркими считается «чистые» цвета, без примеси белого или черного. У каждого тона максимальная яркость наблюдается при разной светлоте: тон/светлота .

Это утверждение верно в том случае, если рассматривать линейку оттенков одного цвета.

Если же выделять наиболее яркий оттенок среди других тонов, то более яркими будут цвет как можно больше разнящийся по светлоте с остальными.

Насыщенность (интенсивность) – это степень выраженности определенного тона. Понятие действует в переделе одного тона, где степень насыщенности измеряется степенью отличия от серого: насыщенность/светлота

Это понятие так же связано с яркостью, так как самый насыщенный тон в своей линейке будет самым ярким.

По шкале светлоты видно, что чем больше насыщенность, тем светлее тон.

Светлота – это степень отличия цвета от белого и черного. Если разница между определяемым цветом и черным больше, чем между ним и белым, значит цвет светлый. Если наоборот – темный. Если разница между черным и белым равны, то цвет средний по светлоте.

Для более удобного определения светлоты цвета, без отвлечения на тон, можно перевести цвета в черно-белый вариант:



Светлота важное свойство цвета. Определение темного и светлого очень древний механизм, он наблюдается у простейших одноклеточных животных, для различения света и темноты. Именно эволюция этой способности привела к цветному зрению, но до сих пор глаз охотнее зацепляется за контраст светлого и темного, чем за какой-нибудь другой.

Теплые и холодные цвета

Теплые и холодные цвета связанны с атрибутами времен года. Холодными называют оттенки присущие зиме, а теплые - лету.

Это то «неопределенное», что лежит на поверхности при первом столкновении с понятием. Оно верно, но действительный принцип разделения лежит гораздо глубже.

Разделение на холодные и теплые идет по длине волны. Чем короче волна, тем холоднее цвет, чем длиннее волна, тем теплее цвет.

Зеленый является пограничным цветом: оттенки зеленого могут быть холодными и теплыми, но при этом они в своих свойствах сохраняют серединное положение.

Зеленый спектр самый комфортный для глаза. Наибольшее количество оттенков мы различаем именно в этом цвете.

Почему именно такое разделение: на холодные и теплые? Ведь волны не имеют температуры.

Сначала деление было интуитивно, потому что действие коротковолновых спектров успокаивает. Чувство вялости напоминает состояние человека зимой. Длинноволновые спектры, наоборот, способствовали активности, что похоже на состояние летом. (см. психологию цвета)

С основными цветами понятно. Но есть множество сложных оттенков, которые также относят к холодным или теплым.

Влияние светлоты на температуру цвета.

Для начала определим: холодными или теплыми являются черный и белый цвета?

Белый цвет – это присутствие всех цветов одновременно, это значит, что он наиболее сбалансирован и нейтрален по температуре. По своим свойствам к нему стремится зеленый. (мы можем различить огромное количество белых оттенков)

Черный цвет – отсутствие цветов. Чем короче волна, тем холоднее цвет. Черный достиг апогея – его длина волны – 0, но в связи с отсутствием волн, его также можно причислить в разряд нейтральных.

К примеру, возьмем красный цвет, который является определенно теплым, рассмотрим его светлые и темные оттенки.

Самым теплым будет «чистоволновый», насыщенный, яркий красный цвет (который посередине).

Как получается более темный оттенок красного?

Красный смешивается с черным — перенимает часть его свойств. Точнее, в данном случае, нейтральный смешивается с теплым и остужает его. Чем выше степень «разбавления» красного черным, тем температура бордового ближе к черному.

Как получается более светлый оттенок красного (розовый)?

Белый своей нейтральностью разбавляет теплый красный цвет. За счет этого красный теряет «количество» тепла, в зависимости от пропорции смешивания.

Цвета, разбавленные черным или белым, никогда не перейдут из категории теплых в холодные: они лишь приблизятся к нейтральным свойствам.

Цвета нейтральные по температуре

Нейтральными по температуре можно назвать цвета, имеющие холодный и теплый оттенок в одной светлоте. Например: тон /светлота

Цветовые контрасты

При соотношении двух противоположностей, по какому либо качеству, свойства каждого из группы приумножается. Так, например, длинная полоска кажется еще длиннее рядом с короткой.

При помощи 7 контрастов можно подчеркнуть в цвете то или иное качество.

Существует 7 контрастов :

1 построен на разнице между цветами. Он представляет собой комбинирование цветов, приближенных к определенным спектрам.

Этот контраст влияет на подсознание. Если рассматривать цвет, как источник информации об окружающем мире, то такое сочетание будет нести информационное послание. (а в некоторых случаях вызывать эпилепсию).

Самым выразительным примером является сочетание белого и черного.

Прекрасно подойдет для достижения эффекта определенности.

Как уже говорилось в статье о светлоте цвета: разницу между светлым и темным увидеть проще, чем соотнести оттенки. За счет этого контраста можно достичь объемности и реалистичности изображения.

Основан на разнице «тормозящих» и возбуждающих цветов. Для создания теплового контраста цвета, в чистом виде, цвета берутся одинаковые по светлоте .

Этот контраст хорош для создания образов с разной активностью: от «снежной королевы» до «борца за справедливость».

Дополнительными называют цвета, при смешивании которых получается серый цвет. Если смешивать спектры дополнительных цветов, то получается белый цвет.

В круге Иттена, эти цвета стоят напротив друг друга.

Это наиболее сбалансированный контраст, так как вместе дополнительные цвета достигают «золотой середины» (белого), но проблема заключается в том, что они не могут создать ни движения, ни достижения цели. Поэтому эти сочетания редко используется в повседневности, так как создают впечатление накала страстей, а в таком состоянии тяжело находиться долго.

А вот в живописи этот инструмент весьма уместен.

– его не существует вне нашего восприятия. Этот контраст более других подтверждает стремление нашего сознания к золотой середине.

Симультанный контраст – это создание иллюзии дополнительного цвета на соседнем оттенке.

Более всего это проявляется в сочетание черного или серого с ароматичными (отличным от черно-белого) цветами.

Если сосредоточенно смотреть на каждый серый прямоугольник по очереди, дожидаясь, когда глаз устанет, то серый изменит оттенок на дополнительный по отношению к фону.

На оранжевом, серый примет синеватый оттенок,

На красном – зеленоватый,

На фиолетовом – желтоватый оттенок.

Этот контраст скорее вреден, чем полезен. Для его погашения следует в изменяемый цвет добавить оттенок основного. Точнее, если в серый цвет добавить желтизны и определить его на оранжевый фон, то симультанный контраст сведется к нулю.

С понятием насыщенности можно ознакомиться .

Добавлю, что к ненасыщенным цветам могут также относиться затемненные, засветленные, сложные не яркие цвета.

Чистый контраст по насыщенности строится на основе разницы между ярким и не ярким цветами в одной светлоте .

Этот контраст дает ощущение выдвижения вперед ярких оттенков на фоне не ярких. С помощью контраста по насыщенности можно подчеркнуть деталь гардероба, расставить акценты.

Основан на количественной разнице между цветами. В этом контрасте можно достигнуть равновесия или динамики.

Замечено, что для достижения гармонии светлого должно быть меньше, чем темного.

Чем светлее пятно на темном фоне, тем меньше для равновесия оно занимает пространства.

При цветах равных по светлоте пространство, занимаемое пятнами, равно.

Психология цвета, значение цвета

Цветовые сочетания

Гармония цвета

Гармония цветов заключается в их согласованности и строгом сочетании. При подборе гармоничных сочетаний легче пользоваться акварельными красками, а имея определенные навыки подбора тонов на красках, нетрудно будет справиться и с нитками.

Гармония цветов подчиняется определенным законам, и, чтобы лучше их уяснить, надо изучить образование цветов. Для этого используют цветовой круг, который представляет собой замкнутую ленту спектра.

На концах диаметров, разделяющих круг на 4 равные части, располагают 4 главных чистых цвета — красный, желтый, зеленый, синий. Говоря о «чистом цвете», подразумевают, что он не содержит в себе оттенков других, соседних с ним в спектре цветов (например, красный цвет, в котором не замечается ни желтого, ни синего оттенков).

Далее на круге между чистыми цветами располагают промежуточные или переходные цвета, которые получают, смешивая попарно в различных пропорциях соседние чистые цвета (например, смешав зеленый с желтым, получают несколько оттенков зеленого цвета). В каждом спектре можно расположить по 2 или 4 промежуточных цвета.

Смешав каждый цвет в отдельности с белой и черной краской, получают светлые и темные тона одного цвета, например, синий, голубой, темно-синий и т. д. Светлые тона располагают с внутренней стороны цветового круга, а темные — с внешней. Заполнив цветовой круг, можно заметить, что в одной половине круга расположены теплые цвета (красный, желтый, оранжевый), а в другой половине — холодные (синий, голубой, фиолетовый).

Зеленый цвет может быть теплым, если в нем есть примесь желтого, или холодным — с примесью синего. Красный цвет также может быть теплым — с желтоватым оттенком и холодным — с синим оттенком. Гармоничное сочетание цветов заключается в уравновешенности теплых и холодных тонов, а также в согласованности различных цветов и оттенков между собой. Наиболее простым способом определения гармоничных сочетаний цветов является нахождение этих цветов на цветовом круге.

Выделяют 4 группы цветовых сочетаний.

Монохромные — цвета, имеющие одно название, но разную светлоту, то есть переходные тона одного цвета от темного до светлого (полученные путем добавления в один цвет черной или белой краски в разных количествах). Эти цвета наиболее гармонично сочетаются между собой и просты в подборе.

Гармония нескольких тонов одного цвета (лучше 3-4) выглядит интереснее, богаче, чем одноцветная композиция, например белый, светло-голубой, синий и темно-синий или коричневый, светло-коричневый, бежевый, белый.

Монохромные сочетания часто используют в вышивке одежды (например, на голубом фоне вышивают нитками темно-голубыми, голубыми и белыми), декоративных салфеток (например, на суровом полотне вышивают нитками коричневыми, светло-коричневыми, бежевыми), а также в художественной вышивке листьев и лепестков цветов для передачи светотени.

Родственные цвета располагаются в одной четверти цветового круга и имеют в своем составе один общий главный цвет (например, желтый, желто-красный, желтовато-красный). Существуют 4 группы родственных цветов: желто-красные, красно-синие, сине-зеленые и зелено-желтые.

Переходные оттенки одного цвета хорошо согласованы между собой и гармонично сочетаются, так как имеют в своем составе общий главный цвет. Гармоничные сочетания родственных цветов спокойны, мягки, особенно если цвета слабо насыщены и близки по светлоте (красный, пурпурный, фиолетовый).

Родственно-контрастные цвета располагаются в двух соседних четвертях цветового круга на концах хорд (то есть линий, параллельных диаметрам) и имеют в своем составе один общий цвет и два других составляющих цвета, например, желтый с красным оттенком (желток) и синий с красным оттенком (фиолетовый). Эти цвета согласованы (объединены) между собой общим (красным) оттенком и гармонично сочетаются. Существуют 4 группы родственно-контрастных цветов: желто-красные и желто-зеленые; сине-красные и сине-зеленые; красно-желтые и красно-синие; зелено-желтые и зелено-синие.

Родственно-контрастные цвета гармонично сочетаются, если они уравновешены равным количеством присутствующего в них общего цвета (то есть красные и зеленые цвета одинаково желтоваты или синеваты). Эти сочетания цветов выглядят более резко, чем родственные.

Контрастные цвета. Диаметрально противоположные цвета и оттенки на цветовом круге самые контрастные и несогласованные между собой.

Чем больше цвета отличаются друг от друга по цветовому тону, светлоте и насыщенности, тем менее они гармонируют друг с другом. При соприкосновении этих цветов возникает неприятная для глаза пестрота. Но существует способ согласования контрастных цветов. Для этого к основным контрастным цветам добавляют промежуточные, которые гармонично соединяют их.


Практический подход

Занятие 10. ПАРАМЕТРЫ: ЦВЕТОВОЙ ТОН, НАСЫЩЕННОСТЬ,

Порядок выполнения работы

Этот опыт касается любой системы Цветовой тон, Насыщенность, Яркость (TSL)

Сравните систему RGB с системой TSL.

Круг представляет собой насыщенность.

Направление луча представляет собой цветовой тон.

Параметр Яркость находится в третьем измерении.

Перемещайте цветовой прямоугольник для противопоставления с полученными цветами.

А . Где находится цвет, полученный в системе TSL?

B . Где проходит ось яркости?

C . Какова форма колориметрического диапазона?

D . Возможно ли получение такого диапазона с помощью линейной трансформации?

E . В появившемся меню выберите за основу синие цвета. Что вы думаете о полученном круге?

Результаты и выводы

А . Полученный цвет находится на пересечении луча цветового тона и круга насыщен­ности.

B . Ось яркости проходит через центр круга.

C . Полученная фигура – конус. Это одно из возможных изображений системы TSL, существуют и другие.

D . Эту фигуру невозможно было бы получить линейным методом, потому что его не­достаточно для преобразования куба в конус.

Е . Выбрав за основу синие цвета, вы получите цвета в порядке их появления на вектроскопе видеокамеры, но будьте внимательны: это не колориметрическое видеопространство, полученное линейным методом (матрицей).

Теория

Параметры цветовой тон, насыщенность, яркость присутствуют в работах многих специалистов по колориметрии, среди которых следует отметить, прежде всего, А. Манселла и В. Оствальда, которые независимо друг от друга разработали цветовые атласы на основе хроматического круга. Эти пространства называются по-английски hue, saturation, value , или HSB, Hue, Saturation, Brightness , где одним из критериев является яркость, или светлота цвета. Может возникнуть некоторая путаница с по­нятием яркости в фотометрии, поэтому более обоснованным будет использование термина светлоты, который обозначает субъективное восприятие яркости, и даже понятия субъективной яркости (brightness ). В любом случае термин яркость прочно вошел в язык, и существуют четкие различия фотометрического понятия яркости и видеозаписи, где этот термин описывает электрический сигнал. Поэтому термин luma (яркость) предпочтительнее. Также речь может идти о воспринимаемой силе света для прямых источников и об освещенности для освещенных объектов, причем оба термина являются синонимами яркости1. В психофизиологии хромией называют чувственное восприятие цветового тона и насыщенности. Параметры TSL ориенти­рованы на систему яркость-цветность, или luma-chroma для видеоизображений.

Для многих описание цвета с точки зрения параметров цветовой тон, насыщенность, яркость кажется более логичным. Так же как пространство МКО L*, а*, Ь*, эти пространства часто называют «перцептивными». Напомним, что цвет является результатом восприятия, следовательно, все колориметрические пространства - это воспринимаемые пространства. Эти пространства следовало бы даже называть психологическими. В большей части из них используются полярные координаты, хотя представление такого пространства в декартовых координатах также возможно. Отметим, что этот метод сначала не был принят МКО для разработки хроматичес­кого пространства в 1931 году.

Пусть тригонометрический круг имеет радиус величиной в единицу. Пусть точка Р обозначает цвет. В таком пространстве цветовой тон выражен уг­лом Т, образованным изначальным лу­чом и лучом, проходящим через точку р. Насыщенность будет выражена зна­чением S отрезка ОР. Ось, проходящая через центр круга в третьем измерении, обозначает яркость. Для перехода от пространства RGB к TSL используется нелинейное преобразование.

Можно построить различные виды пространств TSL, от самой простой формы конуса до формы двойного конуса или двойной шестиугольной пирамиды. Во многих программах используется именно этот вид изобра­жения цвета.

Изображение в форме конуса обладает одним недостатком: проис­ходит некоторое смешение понятий яркости и насыщенности, потому что единственный способ получения бе­лого - это уменьшение насыщенности цвета.

5.6 Пространство МКО L*, а*, b*

Пространство МКО L*, а*, b* было создано как колориметрическое пространство, соответствующее кодированию сигналов визуального восприятия и однородное с точки зрения дифференциального восприятия цветов. Это пространство также может содержать параметры Цветовой тон, Насыщенность, Яркость. Пространство МКО LAB часто называют «перцептивным» в противопоставлении с другими пространствами. Это не что иное, как сокращение: так как цвет является резуль­татом восприятия, то все колориметрические пространства можно рассматривать как перцептивные. На самом деле это определение следует сформулировать таким образом: психологическое колориметрическое пространство, относительно однородное с точки зрения дифференциального восприятия цветов. В создании этого пространства был использован принцип пространства Hunter Lab 1958 года.

Структура этого пространства основана на работах по организации системы визуального восприятия на трех оппозициях:

· черный - белый (ахроматическая ось);

· красный - зеленый;

· желтый - синий;

Центром этого пространства является ахроматическая ось. Оно вычисляется для каждого стандартного источника света.

На оси + а* – а* красный находится в оппозиции с зеленым.

На оси + b* – b* желтый находится в оппозиции с синим.

Ось L* обозначает светлоту (luma ) во избежа­ние смешения этого термина с понятием яркости в фотометрии.

В таком пространстве эллипсы равного вос­приятия должны иметь равную площадь.

Радиус круга с площадью, равной площади эллипсов, четко определяет единицу для каждого из трех измерений.

Переход от пространства МКО ХУZ к про­странству L*, а*, b* возможен, но преобразования в этом случае будут нелинейными.

Пусть - трихроматические координаты эталонного белого, взятого в качестве идеального рассеивателя.

Рис. 5.23. Три оси пространства МКО LAB

Если > 0,008856, то:

,

при (значение) = значение , если значение > 0,008856,

иначе (значение) = 7,787значение + .

Отметим, что условия, выдвинутые Паули:

предполагают, что эталонные цветовые компоненты достаточно удалены от белой точки. С другой стороны, значение яркости V соответствует ее значению на кри­вой чувствительности глаза к яркости, определение которой было дано выше (см. §3.8).

Если условия Паули учитываются, то уравнения можно записать в упрощенном виде:

С помощью обратной операции можно перейти от системы МКО LAB к системе МКО XYZ .

Если , то

Система LAB позволяет использование цилиндрических координат пространс­тва TSL с координатами L*, С*, Н*. Н* – это цветовой тон (hue ), С* – уровень насыщенности (chroma ), а значение светлоты (luma ) остается постоянным.

Н* = при a ≠ 0

Для всех случаев полное отклонение цвета

а отклонение цветового тона:

Чтобы глаз смог заметить разницу между цветами, необходимо отклонение хотя бы в единицу, = 1, однако на практике часто допускаются и колоримет­рические отклонения = 5.

Рис. 5.24. Цветовой круг в пространстве МКО L*a*b*

Система МКО L*a*b* имеет ряд недостатков:

1. Она не содержит диаграмму цветностей, то есть невозможно вычислить дополнительный цвет или чистоту цвета с помощью простых чертежей или измерений отрезков, так как линии доминантной длины волны становятся в этом пространстве кривыми.

2. При изменении яркости цвета его изображение уже не меняется по прямой. По этой причине это пространство используется в областях, где изменения яркости не являются столь важными, например, в полиграфии.

3. Преобразование насыщенных синих цветов из пространства RGB в L*a*b* немного склоняется к пурпурным, что требует коррекции с помощью программ обработки изображений, таких как Photoshop™.

4. Изохроматические зоны, или эллипсы, не обладают совершенно равной пло­щадью. В частности, изохроматические зоны имеют площадь в два раза больше в области зеленого, чем в области оранжевого. Для всех цветов, расположенных по краям круга, площади этих зон в несколько раз больше, чем площади эллип­сов в центре круга, так как дифференциальное восприятие глаза гораздо шире в области малонасыщенных цветов. Это принцип живописи акварелью, когда изображение накладывается прозрачными цветами на белый фон, и создается бесконечное множество оттенков одним мазком кисти. Что касается съемки на мультиматричную видеокамеру, то колориметрические настройки на сером фоне производить сложнее, чем на цветном фоне. Вы можете повторить первый опыт этого издания, изменив насыщенность цветных карточек (Меню > Настройки изображения > Специальные > Изменить насыщенность). Пространство МКО L*a*b* пока мало используется в видеосъемке, но широко распространено в текстильной промышленности и в полиграфии. Использование этого пространства дополняется возможностями вычислений, возникшими с прогрессом в области информатики. Многие вычисления производятся сначала в системе МКО XYZ , а затем переводятся в систему МКО LAB. Так как уравнения кодирования видеоинформации основаны на пространстве XYZ, то использование этого пространства, а также производных Yxy и Yu’v’ часто остается более простым.

Рис.5.25. Оценка изохроматических зон в пространстве МКО L*а*b*

5.7 Пространство МКО L*, u*, v*

В 1976 году МКО создала пространство L*, u*, v*, отличное от пространств МКО LAB, L, u, v и L, u", v" . Однако оно напрямую связано с пространствами МКО XYZ и L, u", v .

Допустим, что уравнения идентичны уравнениям в системе L, u", v"

Мы получаем:

Это трихроматические координаты белой точки.

Это пространство зависит от данного стандартного источника света (от белой точки). Плюсом этого пространства является возможность сохранения линейных функций (основанных на прямых линиях) на диаграмме цветностей. Тогда как система МКО LAB предназначена для цветов, нанесенных на основу и на различ­ные красители, пространство МКО LUV было разработано главным образом для цветовых систем, в которых изменения яркости являются важным параметром: например, для видеоэкранов.

Каждый объект в природе человек может увидеть как предмет того или иного цвета.
Это обусловлено способностью разных предметов поглощать или отражать электромагнитные волны определённой длины. И способностью человеческого глаза воспринимать это отражение посредством особых клеток в сетчатке глаза. Сам предмет при этом цвета не имеет, он обладает только физическими свойствами – поглощать или отражать свет.

Откуда берутся эти самые волны? Любой источник света состоит из этих волн. Таким образом, человек увидеть цвет предмета может только при его освещённости. Причём в зависимости от источника света (солнце днём, солнце на закате или на восходе, луна, лампы накаливания, огонь и т.д.), силы света (более яркий, более тусклый), а также от способности личного восприятия конкретным человеком, цвет предмета может выглядеть по-разному. Хотя сам предмет при этом не меняется, конечно. Итак, цвет – это субъективная характеристика предмета, которая зависит от разных факторов.
Некоторые люди в силу особенностей развития организма вообще не различают цвета. Но большая часть людей способна воспринимать глазом волны определённой длины – от 380 до 780 nm. Поэтому данный участок был назван видимым излучением.

Если солнечный свет пропустить через призму, этот луч разложится на отдельные волны. Это как раз те самые цвета, которые может воспринимать глаз человека: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый. Это 7 электромагнитных волн разной длины, которые вместе составляют белый свет (глазом видим как белый цвет), т.е. его «спектр».
Итак, каждый цвет – это волна определённой длины, которую может увидеть и распознать человек!

Видимый цвет предмета определён тем, каким образом этот предмет взаимодействует со светом, т.е. с составляющими его волнами. Если предмет отражает волны какой-то длины, то эти волны и определяют то, каким мы видим этот цвет. Например, апельсин отражает волны длиной примерно от 590 до 625 nm – это волны оранжевого цвета, а остальные волны поглощает. Именно эти отражающиеся волны и воспринимаются глазом. Поэтому апельсин человек видит оранжевым. А трава выглядит зелёной, потому что благодаря своей молекулярной структуре, поглощает волны красного и синего цвета и отражает волны зелёной части спектра.
Если предмет отражает все волны, а как мы уже знаем, все 7 цветов вместе образуют белый свет (цвет), то такой предмет мы видим белым. А если предмет поглощает все волны, то такой предмет мы видим чёрным.
Промежуточные варианты между белым и чёрным – оттенки серого. Три этих цвета – белый, серый и чёрный – называются ахроматическими, т.е. не содержащими «цветного» цвета, они не входят в спектр. Цвета из спектра – хроматические.


Как я уже говорила, воспринимаемый цвет зависит от источника света. Без света нет волн и нечему отражаться, глаз не видит ничего. Если освещение недостаточно, то глаз видит только очертания предметов – более тёмные или менее тёмные, но все в одной серо-чёрной гамме. За способность глаза видеть в условиях плохого освещения отвечают другие участки сетчатки.

Таким образом, в зависимости от характера света, попадающего на предмет, мы видим разные варианты цвета этого предмета.
Если предмет освещён хорошо, мы видим его чётким, цвет чистый. Если света слишком много, цвет видится разбелённым (вспомните пересвеченные фотографии). Если света мало, цвет выглядит темнее, постепенно стремясь к чёрному.

Каждый цвет можно проанализировать по нескольким параметрам. Это характеристики цвета.

Характеристики цвета.

1) ЦВЕТОВОЙ ТОН . Это та самая длина волны, которая и определяет положение цвета в спектре, его название: красный, синий, жёлтый и т.д.
Необходимо различать понятия «тон» и «подтон».
Тон – это основная краска. Подтон – примесь другого цвета.
За счёт разности подтонов и образуются разные оттенки одного и того же цвета. Например, жёлто-зелёный и сине-зелёный. Основной тон – зелёный, подтон (в меньшем количестве) – жёлтый или синий.
Как раз подтон и определяет такое понятие, как ТЕМПЕРАТУРА цвета. Если к основному тону добавить жёлтый пигмент, то температура цвета будет ощущаться тёплой. Ассоциации с красно-жёлто-оранжевыми цветами – огонь, солнце, тепло, жар. Предметы тёплых оттенков кажутся ближе.
Если к основному тону добавить синий пигмент, то температура цвета будет восприниматься холодной (цвета голубой и синий ассоциируются с льдом, инеем, холодом). Предметы холодных оттенков кажутся дальше.

Здесь важно запомнить и не путать понятия. Есть два значения словосочетаний «тёплые цвета» и «холодные цвета». В одном случае говорят о цветовом тоне, тогда красный, оранжевый и жёлтый – тёплые, а синий, сине-зелёный и фиолетовый – холодные цвета. Зелёный и сиреневый – нейтральные.

Во втором случае речь идёт о подтоне цвета, о его преобладающем оттенке. Именно в этом значении и будет употребляться этот термин в дальнейшем для описания цветов внешности – тёплых и холодных цветотипов. И говоря о температуре цвета в этом значении, мы имеем в виду, что каждый цвет может иметь и тёплый, и холодный оттенок в зависимости от своего подтона ! Кроме оранжевого – он всегда тёплый (из-за особенностей его расположения в спектре). Белый и чёрный вообще не входят в цветовой круг и потому для них не применимо понятие цветового тона, но коль речь зашла о температуре всех цветов, то обозначу сразу, что эти два относятся к холодным цветам.


2) Вторая характеристика каждого цвета – ЯРКОСТЬ .
Она показывает, насколько сильно световое излучение. Если сильное, то цвет максимально яркий. Чем меньше света, тем цвет выглядит темнее, яркость снижается. Любой цвет при максимальном снижении яркости становится чёрным. Представьте предметы яркого цвета в условиях сумерек – цвет кажется тёмным, его яркость не видна. Понижение яркости за счёт добавления чёрного делает цвет более НАСЫЩЕННЫМ . Тёмно-красный – это насыщенный (глубокий) красный, тёмно-синий – насыщенный (глубокий) синий и т.д. В английском языке для более густого, тёмного цвета применяются слова-синонимы: deep (глубокий) и dark (тёмный). В названиях цветотипов вы эти термины тоже встретите.
Яркость света и яркость цвета – разные понятия. Выше говорилось именно о цвете предмета при ярком свете. В графических программах (в том же painte) яркость используется именно в этом значении. На картинке ниже можно увидеть уменьшение параметра «яркость» при затемнении цвета.
Но также существует термин «яркость», в значении «чистота», «сочность» цвета, т.е. максимально интенсивный цвет без примесей чёрного, белого или серого. И именно в этом значении я буду использовать этот термин в дальнейшем. Если написано «параметр «яркость»», то речь идёт об изменении освещения (т.е. светлоте/темноте).

3) Третья характеристика каждого цвета – СВЕТЛОТА .
Это характеристика, противоположная насыщенности (затемнённости, силе) цвета.
Чем больше светлота, тем ближе цвет к белому. Максимальная светлота любого цвета – белый цвет. Параметр «яркость» при этом повышается. Но эта яркость – не цветность (чистота), а увеличение освещённости, ещё раз делаю акцент на разнице этих понятий.
Оттенки с повышающейся степенью светлоты воспринимаются как всё более и более разбелённые, бледные, слабые. Т.е. с малой насыщенностью.

4) Четвёртая характеристика каждого цвета – ХРОМАТИЧНОСТЬ (ИНТЕНСИВНОСТЬ) . Это степень «чистоты» цвета, отсутствие примесей в его тоне, его сочность. При добавлении в основной цвет серого пигмента, цвет становится менее ярким, иначе – приглушённым, мягким. Т.е. его хроматичность (цветность) понижается. При максимально сниженной хроматичности цвета любой цвет становится одним из оттенков серого.
Важно не путать понятия «сочный» и «насыщенный» цвет. Напоминаю, что насыщенный – это тёмный оттенок, а сочный – это яркий, без примесей, тон.
Часто, когда говорят, что цвет яркий, имеют в виду, что он максимально хроматичен, чистый, сочный цвет. Именно в этом значении данный термин и используется в теории цветотипов, о которых пойдёт речь дальше.
Если же говорить о параметре «яркость» в значении освещённости (много света – яркость выше – цвет белее, мало света – яркость ниже – цвет темнее), то мы увидим, что при снижении хроматичности этот параметр не меняется. Т.е. характеристика хроматичность применяется к предметам с одним цветовым тоном в условиях одинаковой освещённости. Но один предмет при этом выглядит более «живым», а другой более «выцветшим» (выцветший – потерявший свой яркий цвет).

Если увеличить параметр «яркость», т.е. добавить белый цвет, то и на этом уровне светлоты можно таким же образом делать цвет более приглушённым, добавляя серый оттенок.

Аналогично и с более насыщенными (более тёмными) оттенками – они тоже бывают как более чистыми, так и более приглушёнными. Главное, что мы видим во всех случаях при уменьшении хроматичности – это всё более выраженный серый подтон. Именно это отличает мягкие цвета от ярких (чистых).

Ещё один важный нюанс – при добавлении в основной тон любого ахроматического цвета (белый, серый, чёрный), меняется температура цвета. Она не меняется на противоположную, т.е. тёплый цвет не станет таким образом холодным или наоборот. Но эти цвета приблизятся по характеристике «температура» к нейтральным оттенкам. Т.е. без ярко выраженной температуры. Именно поэтому представители мягких, тёмных или светлых цветотипов могут носить некоторые цвета из нейтрально-холодных или нейтрально-тёплых вне зависимости от своего основного цветотипа. Но об этом буду рассказывать позже.

Таким образом, по своим основным характеристикам все оттенки делятся на:
1) Тёплые (с золотистым подтоном) / холодные (с синим подтоном)
2) Светлые (ненасыщенные) / тёмные (насыщенные)
3) Яркие (чистые) / мягкие (приглушённые)

И у каждого цвета есть одна ведущая характеристика и две дополнительных, что и обусловливает название некоторых оттенков. Например, светло-розовый – ведущая характеристика – «светлый», дополнительные – может быть как тёплым, так и холодным, как ярким, так и мягким.

Потренируемся определять ведущую характеристику.

Или одну ведущую и одну – дополнительную.

На приведённых выше примерах хорошо видно влияние полутона на ведущую характеристику оттенка:
Тёмные цвета – цвета с добавлением чёрного (насыщенные).
Светлые цвета – цвета с добавлением белого (выбеленные).
Тёплые цвета – цвета с тёплыми (жёлтыми, золотистыми) полутонами.
Холодные цвета – цвета с холодными (синими) полутонами, кажутся льдистыми.
Яркие цвета – чистые, без добавления серого.
Мягкие цвета – приглушённые, с добавлением серого.

Мы воспринимаем цвет, как атрибут любого материального объекта, а свет – как фактор, который способен его изменять. Помидор красный, трава зеленая, и свет может лишь добавлять им оттенки или оттенять, верно?.. Не верно!

Цвета как такового не существует, он – результат совместной работы нашего органа зрения и света. Там где нет света не может быть и цвета, в чем вы легко можете убедиться сами находясь в темном помещении. И дело не в том, что темнота скрывает цвета, а в том, что мы видим цвета только благодаря свету! Звучит несколько революционно, не правда ли? Продолжив чтение этой статьи, вы узнаете еще многое, что нужно знать художнику.

Что такое цвет?
Давайте ненадолго обратимся к физике. Не волнуйтесь, я постараюсь излагать максимально просто и доходчиво. Некоторые окружающие нас объекты имеют свойство излучать или выбрасывать в пространство пучки частиц (или волн) в различных направлениях. Свет – один из видов излучения, и каждый источник света испускает фотоны.

Фотоны – это комбинация из нескольких волн различной длинны (на рисунке x, y, и z)

Путь, по которому фотон летит от источника свет в определенном направлении, мы будем называть лучом

Итак, мы познакомились с несколькими основополагающими фактами. А что же происходит, когда в этой системе появляется человеческий фактор? Нас окружает огромное количество различного вида излучений, но наше зрение способно реагировать только на излучение определенного диапазона длин волн. Например, мы не можем видеть теплового излучения до тех пор, пока его длинна волны не достигнет этого диапазона (раскаленный до красна металл вдруг становится источником света). Часть электромагнитного излучения, которую мы можем видеть, называется видимым светом, или попросту – светом.

Здесь следует напомнить еще об одном факте. Наши глаза имеют два вида клеток-фоторецепторов: колбочки и палочки. Когда на них попадает свет, они реагируют на него и передают в мозг определенную информацию.

Эти самые палочки очень чувствительны к свету, и отвечают за ночное виденье, виденье движущихся объектов и форм. Но для нас более интересны колбочки. Они способны разделять волну на составляющие волны различной длинны, которые мозг грубо интерпретирует как красный (длинный), зеленый (средний) и синий (короткий). В зависимости от длин волн, образующих луч, мы воспринимаем определенную смесь этих трех цветов.

Большинство лучей на своем пути достигают различных объектов, отражаются от них, изменяя свое направление, после чего могут быть отражены повторно (например, в ваших глазах). Как правило, объект, которого достигает луч, не отражает его полностью, наподобие зеркала. Часть волн будет поглощена этим объектом, и уже никогда не достигнет ваших глаз. В результате мы воспринимаем только какую-то часть от оригинального луча, отраженного от объекта. Именно эта оставшаяся часть интерпретируется нашим мозгом как цвет объекта. Различные цвета создаются различными материалами, обладающими различными отражающими и поглощающими свойствами.

Возможно, вам не терпится узнать, какое отношение это все имеет к цветам при рисовании. Ведь, в конце концов, мы лишь рисуем при помощи цветов, а не создаем их физически! Читайте дальше, и очень скоро вам все станет ясно.

Цветовой тон, Насыщенность, Яркость
Вот где может начаться настоящая путаница! Нам интуитивно понятно, что такое тон, насыщенность и яркость, но когда дело доходит до практики (рисования) с их использованием нередко возникают трудности. Тон – это тоже цвет, верно? Насыщенность – показывает насколько “живыми” являются цвета… А яркость сообщает нам темный объект или светлый. Но это все на уровне ощущений. Когда же дело доходит до рисунка, бывает очень трудно применить их на практике. Чтобы справиться с этим, достаточно просто уяснить для себя откуда берутся все эти величины.

Определение Оттенка
Оттенок – это определенный тип цвета. Красный, пурпурный, малиновый – это все оттенки. Они появляются благодаря описанному ранее механизму, когда отраженный свет смешивается в различных пропорциях и мозгом интерпретируется окончательный цвет. То есть, проще говоря, оттенок определяется цветом объекта. Интересный факт: серебристый, золотистый и коричневый оттенками не являются. Серебристый – это сияющий серый, золотистый – сияющий желтый, а коричневый – это обесцвеченный оранжевый.

Вне зависимости от того, сколько раз мы будем инвертировать оттенки, все они образуются комбинацией красного, зеленого и синего цветов. И чем дальше вы будете смещаться по цветовому колесу от любого из них, тем более уникальный цвет получите в результате. Например, 50%-зеленый + 50%-красный дают желтый, но стоит лишь слегка отклониться от этой пропорции, вы получите зеленоватый или красноватый оттенок.

Нет большего или меньшего оттенка относительно друг друга. На цветовом круге они все равнозначны. Следовательно, их можно описывать не в процентном соотношении, и в градусах.

Определение насыщенности
Оттенок не есть цвет (по крайней мере, формально). Все круги на изображении ниже имеют одинаковый оттенок, абсолютно одинаковое положение на цветовом колесе (а так же абсолютно одинаковую яркость!). Так почему же нам кажется, что круги, показанные ниже, разного цвета?

Основная характеристика насыщенности – количество в цвете белой составляющей. Но вы справедливо возразите: не является ли это характеристикой яркости?! Хотите получить более яркий свет – добавьте белого! В результате чего затемненные области станут более насыщенными! Очень запутанно, правда? Вот почему нам нужно уяснить еще кое-что.

Насыщенность это – доминирование какого-либо цвета. На примере ниже круги имеют одинаковые яркость и оттенок. Различаются только пропорции составляющих. Мы не “добавляем белого”, а просто уменьшаем расстояние между составляющими, так, чтобы не преобладала ни одна из них.

Как вы можете догадаться, если в соотношении составляющих разницы нет, то никакой насыщенности и не будет. Все будет белым (о яркости пока речь не идет)

Определение Яркости
Яркость определяет ту наибольшую величину белого, которую способны воспринимать наши глаза. Например, не бывает более синего цвета, чем 100%-синий, точно так же белый не может быть белее 100%-белого цвета.

Шкалы, показанные ниже, не могут быть заполнены более своего максимального значения:

Очевидно, что в этом случае черный образуется полным отсутствием какой-либо цветовой информации

Интересный факт: в темноте колбочки нашего глаза получают минимум информации, что делает нас как бы “слепыми” к цвету. В это время основную визуальную информацию в мозг поставляют палочки, более чувствительные к свету. Но, в силу своей особой восприимчивости к сине-зеленому цвету, они представляют все сине-зеленые поверхности более яркими. Этот эффект носит название эффекта Пуркинье.

Свечение
Помимо величины абсолютной яркости, каждый цвет имеет еще один параметр: свечение. Вы, наверное, замечали, что цвета части объектов кажутся более яркими по сравнению с остальными, даже если все они имеют 100% яркость. Свечение, как раз, показывает насколько ярким является цвет по сравнению с белым.

Если мы преобразуем основные цвета 100%-яркости в градации серого, то заметим, что их яркость резко уменьшится. Белый останется белым, синий превратится в очень-очень темный, а зеленый будет наиболее ярким из всех их. Это происходит из-за индивидуальной чувствительности каждой палочки, и именно по этой причине мы воспринимаем желтый (ярко-красный + очень яркий зеленый) как наиболее яркий цвет. Так же, по этой причине, голубой цвет (темно-синий + очень яркий зеленый) мы иногда называем светло-синим. Свечение очень важно особенно при работе с градациями серого. Например, следует учитывать, что желтый нуждается в более яркой основе, чем остальные цвета, имеющие одинаковую абсолютную яркость.

Модель HSB
В реальной жизни нам не приходится аккуратно и скрупулезно создавать цвета, так как это заняло бы слишком много времени. Тем более, что оттенок, насыщенность и яркость можно скомбинировать в одном очень полезном инструменте. Взгляните на схему ниже. Здесь вы можете заметить совершенно очевидную закономерность изменения цветов. Почему бы не воспользоваться этим?

Если вы – цифровой художник, данная закономерность должна быть вам хорошо знакома. Именно таким образом оттенок, насыщенность и яркость можно объединить в одну модель, получившую название HSB (Hue, Saturation, Brightness). Как она работает?

Теперь, когда вы знаете, что такое оттенок, насыщенность и яркость, вам будет легче объединить их в одну модель. Бегунок (или колесико) с оттенком не зависит от круга/треугольника SB (насыщенности, яркости). Мало того, он является более приоритетным по отношению к параметрам SB. Каждый оттенок может иметь значение яркости и насыщенности, находящееся в определенном диапазоне, причем оба этих значения взаимосвязаны. Вместе они определяют “богатство” какого-либо конкретного оттенка.

SB модель может быть поделена на области с различными свойствами. Если вы научились подбирать нужный оттенок визуально, вам не обязательно что-либо знать конкретные значения насыщенности и яркости. Это позволяет значительно ускорить процесс рисования, и даже сделать его несколько спонтанным.

Не смотря на то, что форма квадрата интуитивно более понятна, лично я предпочитаю треугольник. Он позволяет мне получить больший контроль над “богатством” оттенка в общем, а не регулировать насыщенность и яркость по отдельности (у меня для этого имеются раздельные бегунки).

CMY и RGB
А как быть в случае, когда приходится заниматься традиционным рисованием? Здесь нет удобной программы с цветовым колесом, нет понятных бегунков. Как в этом случае изменять оттенки, насыщенность и яркость пигмента?

Прежде всего, давайте определимся, в чем заключается разница между цифровым и традиционным рисованием. В обоих случаях используются цвета, верно? Проблема заключается в том, что при цифровом рисовании используются разноцветные источники света, создающие более совершенные цвета и обеспечивающие их более четкое восприятие нашими глазами. А при традиционном рисовании мы ограничены цветом, отраженным от пигмента. Отраженный свет здесь выступает как бы в роли посредника между тем, что мы рисуем, и тем, что фактически видим. Можно, конечно, поспорить, какая из сред предоставляет художнику больше творческой свободы, но несомненным остается тот факт, что рисование в цифре лучше взаимодействует с нашим зрительным механизмом.

Итак, для традиционного рисования нам необходимы пигменты. Они не излучают цвет, а вместо этого, поглощают часть падающего на них света, отражая остальную часть в том диапазоне длин волн, которая соответствует их названию. К примеру, красная краска поглощает зеленую и синюю составляющую, отражаю только красную.

Проблема заключается в том, что мы не в силах создать совершенные пигменты, отражающие свет настолько полно, как ели бы он излучался. Так, в качестве компромисса появилась система CMY: голубой не отражает красного, маджента (пурпурный цвет) не отражает зеленого, а желтый не отражает синего. Поэтому, если нам нужно воздействовать целенаправленно только на “синюю” палочку нашего глаза, нам нужно смешать голубой и меджента. Такой пигмент будет отражать самый минимум красного и зеленого. Дополнительный цвет “K”, обозначающий черный, был введен в систему CMY по той причине, что ее оригинальные компоненты при смешении в равных пропорциях не могли обеспечить абсолютно черный цвет.

RGB – аддитивная система, то есть по мере увеличения удельной доли составляющих вы получаете более яркий цвет. CMY – система субтрактивная, в ней с чем меньше объем составляющих – тем цвет ярче.

Четыре правила смешения цветов

Правило 1 – Смешение оттенков
Смешивая два оттенка, вы получаете промежуточный оттенок, находящийся где-то между двумя исходными. Данный принцип действует как при аддитивном так и при субтрактивном смешении.

Правило 2 – Комплементарное смешение
Возможно, вам уже приходилось слышать о комплементарных цветах. Это те цвета, которые лежат на цветовом колесе диаметрально противоположно. Контраст между ними (при условии, что оба оттенка имеют одинаковую яркость) обычно, очень резкий, как между черным и белым. Тем не менее, при смешении они нейтрализуют друг друга.

Смешение комплементарных оттенков дает на выходе нейтральный (серый или сероватый) цвет. Аддитивное смешение двух оттенков со 100%-яркостью дает белый цвет. Субтрактивное – черный.

При субтрактивном методе незначительное добавление комплементарного оттенка является самым легким способом уменьшения насыщенности.

Правило 3 – Смешение насыщенности
При обоих методах смешения (аддитивном и субтрактивном), пропорции компонентов выравниваются, что в результате ведет к уменьшению насыщенности.

Правило 4 – Смешение яркости
Аддитивное смешение дает в итоге более яркий оттенок, субтрактивное – образует оттенок темнее самого светлого из смешиваемых оттенков.

Температура цвета
Существует очень старая и устойчивая традиция разделения цветового колеса на теплую и холодную половину. Мы знаем, что теплые цвета более активны и “дружелюбны”, тогда как холодные - пассивны и мрачны. О психологии восприятия цвета можно написать целую книгу, но проблема в том, что подобное деление не является объективным. Какой цвет является самым теплым? Красный? Желтый? А пурпурный – он теплый или холодный? И где конкретно проходит разделительная линия?

Взгляните на изображение ниже. Показанные здесь круги – красные, и, теоретически все теплые. Так почему же какие-то из них выглядят холоднее чем остальные? Дело в контрасте. Цвет не может быть теплым или холодным. Только теплее или холоднее. Именно поэтому так легко визуально разделить цветовое колесо: здесь видно все цвета сразу, и их легко сравнивать между собой. Но удалите с колеса красный, и на нем больше не будет ни теплых, ни холодных цветов.

Итак, как можно получить более теплый или более холодный оттенок. Каждый оттенок на цветовом колесе имеет своего соседа. Каждый сосед чуть теплее или чуть холоднее другого своего соседа, который, в свою очередь немного холоднее или теплее следующего. Чтобы получить более холодный вариант какого-либо оттенка, смещайтесь в направлении холодного соседа (и наоборот).

Основные правила тонирования
Очень долгое введение получилось? Дайте мне еще чуть-чуть времени, и вы поймете, что все эти долгие рассуждения просто необходимы для успешного уяснения сути всего процесса. Если вы, к примеру, запомните только перечисленные выше правила, вы окажетесь ограниченными только рамками конкретных ситуаций. Но если вы поймете, как эти ситуации возникают, то подобные ограничения исчезнут практически полностью.

Локальные цвета
Основные цвета, не освещаемые каким-либо источником света, называются локальными цветами. А как нам уже известно, не освещаемый объект не может иметь какого-либо цвета. Поэтому лучше немного изменить определение локального цвета. Локальным мы назовем цвет, который не подвержен выраженному влиянию света или тени. То есть локальный цвет вишни – красный, даже если она с одной стороны освещается ярким оранжевым цветом, а с другой – отраженным синим. Локальный цвет – этот тот цвет, с которого следует начинать работу над рисунком.
А как же понимать яркость и насыщенность локального цвета? Яркость определяется воображаемым рассеянным по сцене светом. Чтобы определить общую яркость сцены (интенсивность рассеянного света), поместите ваш объект на белый фон. Оба они будут освещены одним и тем же источником, но объект не может оказаться ярче, чем белый фон (при одинаковых условиях освещения).

Итак, белый фон отражает 100% падающего на него света. Если ваш объект будет казаться боле ярким, чем фон, это будет означать, что он отражает более 100% света (как если бы он сам испускал свет). Следовательно, чем темнее ваше базовое освещение, тем более заметные источники света вы сможете поместить на сцену впоследствии.

А как насчет насыщенности? Если яркость связана с интенсивностью света, насыщенность больше зависит от пропорций его компонентов. Данные пропорции остаются неизменными при изменении интенсивности света (за редкими исключениями, о которых мы поговорим чуть позже). Это как если бы с каждой ложкой сахара мы добавляли в чашку с чаем дополнительную порцию воды. Чай, при этом, не будет становиться слаще.

Источник прямого света
Вот как примерно распределяются освещенные области:

Рассмотрим для уяснения простую сцену, не освещенную каким-либо явным источником света. Земля зеленая, мяч красный, небо…. впрочем, на данный момент это не важно. Если фон очень сильно удален, он не оказывает сколько-нибудь существенного влияния на ваш объект. Мы подобрали определенную яркость и насыщенность, и на данный момент картинка выглядит плоской, двумерной. Вот почему цвета на подобных рисунках называются плоскими. Это – самый простой этап рисования.

Теперь, когда на сцене появился источник света, он заполняет всю сцену. Его интенсивность – яркость – максимальна там, где свет непосредственно контактирует с объектом: полный свет (full light), и полусвет (half light). А области с наименьшей интенсивностью – это те, которых свет достичь не может: основная тень (core shadow), отбрасываемая тень (cast shadow). Чем ярче свет, тем темнее (гуще) тени. Наш локальный цвет становится завершающим (terminator).

Чтобы удержать наш мяч от свободного парения в пространстве, нам нужно создать контактную тень, и создать ее там, куда свет не достигает вовсе. Это будет самый темный участок нашего изображения.

Но наша сцена по-прежнему выглядит… как-то неестественно. Она цветная, радостная, как будто из детской книжки. Но что-то все равно не так. Возможно, вы заметите, что мы использовали здесь только диффузионное отражение. Каждый отдельный луч, падающий на мяч, частично им поглощается, и отражается только красный. Следовательно, в области максимальной яркости света мы получим 100%-красный цвет. И изменить это нет никакой возможности. Это вполне естественная ситуация для матовых поверхностей, и уменьшение насыщенности для получения более яркого красного не сработает.

Но если ситуация естественна, почему сцена выглядит странно? А дело в том, что абсолютно матовые материалы в природе встречаются крайне редко. Практически любой, окружающий нас предмет, отражает хоть какой-то свет в виде блика. Причем блик этот не обязательно должен быть четким и сверкающим. Как правил, он бывает мягким и размытым. Измените свое положение относительно какого-либо объекта поблизости от вас, и если его цвета хотя бы незначительно изменяются при вашем перемещении, то здесь можно говорить о бликовом отражении. Отражение, которое не зависит от вашего положения относительно объекта, называется диффузионным.

Бликовое отражение, как мы выяснили, образуется источником света. Чем источник света сильнее, тем явственнее он просматривается на поверхности объекта. Очень важное значение, при этом, имеет соотношение между бликовыми и диффузионными свойствами материала. Сверкающие объекты, как правило, имеют на своей поверхности очень тонкий прозрачный слой сильно бликующего материала. При этом бликовое и диффузионное отражение между собой практически не смешиваются (третий мяч).

Другими словами, уменьшая насыщенность яркой области (“добавляя в нее белого”), вы не делаете ее более яркой, а добавляете сюда сияние.

Тем не менее, мячи на изображении выше по-прежнему выглядят неестественно (не знали, что существует так много способов создания неестественных цветов?). Теперь они стали выглядеть так, как будто взяты из упражнения по 3D-моделированию. А все потому, что мы использовали для освещения чисто-белый свет, который в природе не встречается. Солнечный свет, прежде чем он достигнет наших глаз, проходит сквозь слои атмосферы, в результате чего в него подмешиваются посторонние цвета.

Волны короткой и средней длинны, как правило, легко рассеиваются. Чем больший путь они преодолевают в толще атмосферы, тем большая его часть рассеивается, и уже никогда не достигнет ваших глаз (по крайней мере, не изменив свое изначальное направление). Поэтому “белые” лучи в нашем случае, будут преимущественно, красноватыми и зеленоватыми. А в самой верхней точки наиболее освещенного участка будет наблюдаться небольшой дефицит синего, обусловленный тем, что цвет солнечного света, сам по себе, теплый.

Так почему же отражение теплого источника света должно быть нейтрально белым? Чтобы избежать ненатурального эффекта 3D-модели, нужно при создании теплого сияния (не важно резкого или мягкого), одновременно уменьшить насыщенность и увеличить температуру. Как уже упоминалось ранее, красные оттенки могут быть как холодными, так и теплыми, поэтому наша красная поверхность вовсе не обязательно должна сразу стать оранжевой или желтой.

Очень важно не использовать сияние в качестве универсального способа сделать изображение более привлекательным. Если вы чувствуете, что используете цвета очень близкие к белому, то объект у вас будет выглядеть сверкающим или мокрым. Учитывайте этот, когда рисуете, например, кожу.

Источники непрямого света
Но что происходит со всем этим рассеянным синеватым светом? Благодаря ему мы видим небо синим. Но, если мы можем видеть этот синий цвет, значит он, все же достигает наших глаз. И не только их! На все объекты вокруг нас падает этот непрямой синий свет, который так же может быть отражен. Он не такой яркий как прямой солнечный свет, но он способен сделать поверхность еще чуть более яркой. Кроме того, если поверхность не абсолютно матовая, она теряет часть насыщенности, и становится более холодной (так как источник нашего непрямого цвета - холодный). Всегда помните, что прямой свет более интенсивный, чем непрямой, и они никогда не смешиваются. Отражение, созданное непрямым источником света, никогда не пересекает терминирующую линию.

Области с наиболее интенсивными отражениями образуются сверкающими поверхностями, но матовые поверхности, такие как, например, почва или земля, так же могут отражаться от объектов.

Общеизвестный факт, что величина контраста уменьшается по мере увеличения расстояния до объекта. Но как обстоит дело с оттенком, насыщенностью и яркостью отдаляющегося объекта? Здесь есть определенные нюансы. По мере удаления объекта, смещения его по направлению к фону, его цветовая информация смешивается со светом, отраженным от неба, не так ли? Отсюда следует:
- оттенок постепенно изменяет свою температуру, смещаясь в сторону оттенка неба;
- яркость постепенно возрастает, стремясь к яркости неба;
- в насыщенность подмешивается шум, что ведет к ее уменьшению; однако, если источник света находится на дальнем плане (передний план затемнен), насыщенность может постепенно увеличиваться по мере приближения к нему объекта.

Чем яснее и чище атмосфера, тем слабее описанный выше эффект. Следовательно, если в воздухе находится большое количество пыли, дыма или наблюдается повышенная влажность, даже находящиеся относительно недалеко объекты изменяют свои свойства довольно резко. Очень распространенная хитрость, к которой прибегают многие художники (и кинематографисты!) – это делать часть одинаковых с виду объектов более чуть размытыми, чуть более светлыми и чуть менее насыщенными. Нашему мозгу они расположенными на некотором удалении. Так достигается ощущение глубины композиции. Однако следует учитывать, что данный прием не сработает на сцене с чистой, прозрачной атмосферой.

Цвет и объем
Правильный выбор цветов обеспечивает правильный объем на изображении. Начинающие художники очень часто начинают свои рисунки именно с объемов, уделяя основное внимание правильному их определению на композиции. Однако, следуя правилам, описанным на данном уроке, у вас не должно возникать проблем определением объемов при помощи цветов. Как это возможно?
- изначальная яркость локальных цветов задает общую яркость всей композиции;
- дивизионный свет и тени насыщенны настолько, насколько насыщен локальный цвет: обесцвеченные тени будут выглядеть ярче при определении объема;
- чем сильнее сияние, тем большей яркостью будет обладать объем;
- непрямой свет не может быть ярче прямого;
- локальный цвет становится терминирующим; с одной его стороны образуется тень, с другой отсвет, что создает естественный контраст.

Как узнать, нужно ли добавлять дополнительные свет или тени? Здесь все зависит от контраста, и вы должны сами решить, что будет больше соответствовать атмосфере вашей композиции. Лучше всего поместить ваш объект поочередно на три фона: черный, белый и 50%-серый. Если он выглядит замечательно на всех из них, то вы все сделали правильно. Так же не плохо было бы для проверки преобразовать ваше изображение в градации серого.

Что следует запомнить
- сильно насыщенные, яркие цвета в природе встречаются редко, приберегите их для цветочков, птичек и всяких волшебных штучек;
- если вам нужно расположить источник света в затемненной области, изменяйте его яркость по принципу градиента;
- если произведенное вами тонирование выглядит слишком цветным, сделайте перерыв, отойдите на некоторое расстояние; у ваших глаз будет возможность немного отдохнуть от этих цветов, после чего они будут восприниматься более актуально; поворот изображение, взгляд на него с различных углов, или отражение его в зеркале так же может дать положительный эффект;
- оставьте чисто-белый цвет для отсветов, а 100%-черный для контактных теней; излишнее увлечение ими значительно снижает их эффективность.

Не нужно больше гадать!
Теперь, когда вы усвоили, что цвет – это всего лишь сигнал, вид информации, можете легко имитировать реальный мир в своих композициях. И не нужно запоминать сотни правил: разобравшись с фундаментальными основами, вы можете воспроизвести окружающее с огромной точностью. Конечно же, не следует воспринимать изложенные выше принципы как единственно верный путь к успеху – искусство есть искусство, и иногда наилучшего результата можно добиться именно нарушив существующие правила.

В одной из следующих статей я познакомлю вас с такими понятиями как множественные и цветные источники света, прозрачность, субповерхностное рассеивание, а так же излучение и преломление света.