Энергия как физическое понятие. Энергия приливов и волн

В связи с развитием производственных технологий и значительным ухудшением экологической ситуации во многих регионах земного шара, человечество столкнулось с проблемой поиска новых источников энергии. С одной стороны, количество добываемой энергии должно быть достаточным для развития производства, науки и коммунально-бытовой сферы, с другой стороны, добыча энергии не должна отрицательно сказываться на окружающей среде.

Данная постановка вопроса привела к поиску так называемых альтернативных источников энергии — источников, соответствующих вышеуказанным требованиям. Усилиями мировой науки было обнаружено множество таких источников, на данный момент большинство из них уже используется более или менее широко. Предлагаем вашему вниманию их краткий обзор:

Солнечная энергия

Солнечные электростанции активно используются более чем в 80 странах, они преобразуют солнечную энергию в электрическую. Существуют разные способы такого преобразования и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи. Большинство крупнейших фотоэлектрических установок мира находятся в США.

Энергия ветра

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Биотопливо

Главными преимуществами данного источника энергии перед другими видами топлива являются его экологичность и возобновляемость. К альтернативным источникам энергии относятся не все виды биотоплива: традиционные дрова тоже являются биотопливом, но не являются альтернативным источником энергии. Альтернативное биотопливо бывает твердым (торф, отходы деревообработки и сельского хозяйства), жидким (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).

Энергия приливов и волн

В отличие от традиционной гидроэнергетики, использующей энергию водного потока, альтернативная гидроэнергетика пока не получила широкого распространения. К главным минусам приливных электростанций относятся высокая стоимость их строительства и суточные изменения мощности, их за которых электростанции этого типа целесообразно использовать только в составе энергосистем, использующих также и другие источники энергии. Основные плюсы — высокая экологичность и низкая себестоимость получения энергии.

Тепловая энергия Земли

Для разработки этого источника энергии используются геотермальные электростанции, использующие энергию высокотемпературных грунтовых вод, а также вулканов. На данный момент более распространенной является гидротермальная энергетика, использующая энергию горячих подземных источников. Петротермальная энергетика, основанная на использовании «сухого» тепла земных недр, на данный момент развита слабо; основной проблемой считается низкая рентабельность данного способа получения энергии.

Атмосферное электричество

(Вспышки молний на поверхности Земли происходят практически одновременно в самых разных местах планеты )

Грозовая энергетика, основывающаяся на захвате и накоплении энергии молний, пока находится в стадии становления. Главными проблемами грозовой энергетики являются подвижность грозовых фронтов, а также быстрота атмосферных электрических разрядов (молний), затрудняющая накопление их энергии.

3.1 Энергия и её виды

3.2 Способы получения и преобразования энергии

3.3 Электрические и тепловые нагрузки и способы их регулирования

3.4 Прямое преобразование солнечной энергии в тепловую и электрическую

3.5 Ветроэнергетика

3.6 Гидроэнергетика

3.7 Биоэнергетика

3.8 Транспортирование тепловой и электрической энергии

3.8.1 Транспортирование тепловой энергии

3.8.2 Транспортирование электрической энергии

3.9 Энергетическое хозяйство промышленных предприятий

3.1 Энергия и её виды

Энергия (от греч. energeie - действие, деятельность) представляет собой общую количественную меру движения и взаимодействия всех видов материи. Это способность к совершению работы, а работа совершается тогда, когда на объект действует физическая сила (давление или гравитация). Работа - это энергия в действии.

Во всех механизмах при совершении работы энергия переходит из одного вида в другой. Но при этом нельзя получить энергии одного вида больше, чем другого, при любых ее превращениях, т. к. это противоречит закону сохранения энергии.

Различают следующие виды энергии: механическая; электрическая; тепловая; магнитная; атомная.

Электрическая энергия является одним из совершенных видов энергии. Её широкое использование обусловлено следующими факторами:

Получением в больших количествах вблизи месторождения ресурсов и водных источников;

Возможностью транспортировки на дальние расстояния с относительно небольшими потерями;

Способностью трансформации в другие виды энергии: механическую, химическую, тепловую, световую;

Отсутствием загрязнения окружающей среды;

Внедрением на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Преобразование первичной энергии во вторичную, в частности, в электрическую, осуществляется на станциях, которые в своем названии содержат указания на то, какой вид первичной энергии преобразуется на них в электрическую:

На тепловой электрической станции (ТЭС) - тепловая;

Гидроэлектростанции (ГЭС) - механическая (энергия движения воды);

Гидроаккумулирующей станции (ГАЭС) - механическая (энергия движения предварительно наполненной в искусственном водоеме воды);

Атомной электростанции (АЭС) - атомная (энергия ядерного топлива);

Приливной электростанции (ПЭС) - приливов.

В Республике Беларусь более 95 % энергии вырабатывается на ТЭС, которые по назначению делятся на два типа:

Конденсационные тепловые электростанции (КЭС), предназначенные для выработки только электрической энергии;

Теплоэлектроцентрали (ТЭЦ), на которых осуществляется комбинированное производство электрической и тепловой энергии.

3.2 Способы получения и преобразования энергии

Тепловая электростанция включает комплект оборудования, в котором внутренняя химическая энергия топлива (твердого, жидкого или газообразного) превращается в тепловую энергию воды и пара, преобразующуюся в механическую энергию вращения, которая и вырабатывает электрическую энергию. Схема выработки электроэнергии на ТЭС представлена на рисунке 6.

Как видно из представленной схемы, поступающее со склада (С) в парогенератор (ПГ) топливо при сжигании выделяет тепловую энергию, которая, нагревая подведенную с водозабора (ВЗ) воду, преобразует ее в энергию водяного пара с температурой 550 °С. В турбине (Т) энергия водяного пара превращается в механическую энергию вращения, передающуюся на генератор (Г), который превращает ее в электрическую. В конденсаторе пара (К) отработанный пар с температурой 123 …125 °С отдает скрытую теплоту парообразования охлаждающей его воде и с помощью циркулярного насоса (Н) в виде конденсата вновь подается в котел-парогенератор.

Рисунок 6 - Схема работы ТЭС

Схема ТЭЦ отличается от ТЭС тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду, подаваемую в главные тепловые магистрали.

Котельная установка представляет собой комплекс устройств для получения водяного пара под давлением или горячей воды. Она состоит из котлоагрегата и вспомогательного оборудования, газо- и воздухопроводов, трубопроводов пара и воды с арматурой, тягодутьевых устройств и др.

Районные , или производственные котельные предназначены для централизованного теплоснабжения жилищно-коммунального хозяйства или самого предприятия. С вводом в действие ТЭЦ некоторые из них остались без дела и могут использоваться как резервные и пиковые, и тогда их называют резервно-пиковыми.

Газотурбинная установка - это двигатель, в лопаточном аппарате которого потенциальная энергия газа преобразуется в кинетическую энергию и затем частично превращается в механическую работу, которая преобразуется в электрическую энергию.

Рисунок 7 - Схема газотурбинной установки с подводом тепловой энергии при = с onst

1 - воздушный компрессор; 2 - газовая турбина; 3 - электрогенератор; 4 - топливный насос; 5 - камера сгорания

В простейшей газотурбинной установке постоянного горения (рисунок 7) воздух, сжатый до некоторого давления в компрессоре 1, поступает в камеру сгорания 5, где его температура повышается за счет сжигания топлива, подающего топливным насосом 4, при постоянном давлении. Продукты сгорания под давлением и при высокой температуре подводятся к турбине 2, в которой совершается работа расширения газа. При этом давление и температура падают. Далее продукты сгорания выбрасываются в атмосферу.

Парогазовая установка - это турбинная теплосиловая установка, в тепловом цикле которой используются два рабочих тела - водяной пар и дымовые газы, поступающие из котлоагрегата.

Поступающий из атмосферы в компрессор 1 (рисунок 8) воздух сжимается с повышением температуры и подается в камеру сгорания 5, в которую при помощи топливного насоса и впрыскивается топливо. В камере сгорания 5 происходит горение топлива, а образующиеся газы поступают в газовую турбину 2, где и совершается работа.

Рисунок 8 - Схема парогазовой установки

1 - воздушный компрессор; 2 - газовая турбина; 3 - электрогенератор; 4 – топ-ливный насос; 5 - камера сгорания; 6 - подогреватель; 7 - котел; 8 - паровая турбина; 9 - конденсатор водяного пара; 10 - питательный насос

Отработанные газы с температурой 350 °С и пониженным давлением поступают в подогреватель 6, где отдают часть теплоты для подогрева питательной воды, поступающей в котел 7 и, охладившись при этом, сбрасываются в атмосферу. Питательная вода используется в котле для получения пара, который поступает в паровую турбину 8 с температурой

540 °С. В ней пар расширяется, производя техническую работу. Отработанный в турбине пар поступает в конденсатор 9, в котором конденсируется, а образовавшийся конденсат при помощи насоса 10 направляется сначала в подогреватель 6, где воспринимает тепло отработавших в газовой турбине газов, а затем - в паровой котел 7. Расходы пара и газа подбираются таким образом, чтобы вода воспринимала максимальное количество теплоты газов. Термический коэффициент полезного действия установок - свыше 60 %.

О том, насколько эффективно внедрение паротурбинных установок, показывает внедрение в Витебском производственном объединении «Витязь» двух паротурбинных установок, которые способны вырабатывать 1500 кВт электроэнергии (по 750 кВт каждая) и ежемесячно экономить до 30 тыс. долларов на покупку энергии. Срок окупаемости проекта - чуть больше года.

Гидроэлектростанция представляет собой комплекс гидротехнических сооружений и энергетического оборудования, посредством которых энергия водных потоков или расположенных на относительно более высоких уровнях водоёмов преобразуется в электрическую энергию.

Технологический процесс получения электроэнергии на ГЭС включает:

Создание разных уровней воды в верхнем и нижнем бьефах;

Превращение энергии потока воды в энергию вращения вала гидравлической турбины;

Превращение гидрогенератором энергии вращения в энергию электрического тока.

Гидроаккумулирующая электростанция представляет собой такую гидроэлектростанцию, в которой поступление воды в водоем верхнего бьефа обеспечивается искусственно, посредством насосов, работающих за счет электроэнергии из системы. Она оборудована кроме турбин насосами (помпами) или только турбинами, которые могут работать в режиме помп (обратные турбины) для подъема воды в часы малых нагрузок в энергосистеме с нижнего бьефа в водохранилище верхнего бьефа за счет подключения к энергосистеме. При больших нагрузках ГАЭС работают как обычные ГЭС.

Тепловые схемы АЭС зависят от типа реактора; вида теплоносителя; состава оборудования и могут быть одно-, двух-, и трехконтурными.

Схема выработки электроэнергии на одноконтурной АЭС представлена па рисунке 9. Пар вырабатывается непосредственно в реакторе и поступает в паровую турбину. Отработанный пар конденсируется в конденсаторе, и конденсат подается насосом в реактор. Схема проста, экономична. Однако пар (рабочее тело) на выходе из реактора становится радиоактивным, что предъявляет повышенные требования к биологической защите и затрудняет проведение контроля и ремонта оборудования.

Рисунок 9 - Тепловая схема простейшей одноконтурной атомной электростанции

1 - атомный реактор; 2 - турбина; 3 - электрогенератор; 4- конденсатор водяных паров; 5 - питательный насос

В двухконтурных схемах производства электроэнергии на АЭС имеется два самостоятельных контура (рисунок 10) - теплоносителя и рабочего тела. Общее оборудование у них - парогенератор, в котором нагретый в реакторе теплоноситель отдает свою теплоту рабочему телу и при помощи циркуляционного насоса возвращается в реактор.

Рисунок 10 - Тепловая схема простейшей двухконтурной атомной электростанции

1 - атомный реактор; 2 - теплообменник-парогенератор; 3 - главный циркуляционный насос; 4 - турбина; 5 - электрогенератор; 6 - конденсатор водяных паров; 7 - питательный насос

Давление в первом контуре (контуре теплоносителя) значительно выше, чем во втором. Полученный в теплогенераторе пар подается в турбину, совершает работу, затем конденсируется, и конденсат питательным насосом подается в парогенератор. Хотя парогенератор усложняет установку и уменьшает её экономичность, но препятствует радиоактивности во втором контуре.

В трехконтурной схеме теплоносителями первого контура служат жидкие металлы (например, натрий). Радиоактивный натрий из реактора поступает в теплообменник промежуточного контура с натрием, которому отдает теплоту и возвращается в реактор. Давление натрия во втором контуре выше, чем в первом, что исключает утечку радиоактивного натрия. В промежуточном втором контуре натрий отдает теплоту рабочему телу (воде) третьего контура. Образовавшийся пар поступает в турбину, совершает работу, конденсируется и поступает в парогенератор.

Трехконтурная схема требует больших затрат, но обеспечивает безопасную работу реактора.

Отличие ТЭС от АЭС состоит в том, что источником теплоты на ТЭС является паровой котел, в котором сжигается органическое топливо; на АЭС -ядерный реактор, теплота в котором выделяется делением ядерного топлива, обладающего высокой теплотворной способностью (в миллионы раз выше, чем органическое топливо). Один грамм урана содержит 2,6 10 ядер, при делении которых выделяется 2000 кВт ч энергии. Для получения такого же количества энергии нужно сжечь более 2000 кг угля.

Однако при эксплуатации АЭС образуется большое количество радиоактивных веществ в топливе, теплоносителе, конструкционных материалах. Поэтому АЭС является источником радиационной опасности для обслуживающего персонала и проживающего вблизи населения, что повышает требование к надежности и безопасности её эксплуатации.

Теплоэлектрацентраль (ТЭЦ) - это тепловая электростанция, выраба-тывающая не только электрическую энергию, но и тепло, отпускаемое потре-бителям в виде пара и горячей воды для коммунально-бытового потребления. При такой комбинированной выработке тепловой и электрической энергии в тепловую сеть отдается главным образом теплота отработавшего в турбинах пара (или газа), что приводит к снижению расхода топлива на 25-30 % по сравнению с раздельной выработкой энергии на КЭС или ГРЭС (государственные районные электростанции) и теплоты в районных котельных.

Это физическая величина, мера разных форм движения и взаимодействия форм материй, их перехода из одних форм в другие. В зависимости от формы движения материи различают такие формы энергии, как механическая, электромагнитная, внутренняя, ядерная и т.д. Но это деление во многом условно. В использование понятия энергии считается целесообразным тогда, когда величина сохраняется при движении, т.е. рассматриваемая система должна быть однородной во времени.

Тепловая энергия представляет собой энергию хаотического движения молекул. В другие виды энергии она превращается с потерями. Электромагнитная - энергия, заключенная в магнитном поле (ее также в зависимости от ситуации делят на электрическую и магнитную). Под гравитационной понимается потенциальная энергия системы частиц (или тел), тяготеющих друг к другу. Ядерная (или атомная) энергия содержится в атомных и выделяется при ядерных реакциях. Эта энергия применяется в атомных электрических станциях для получения тепла (которое используется для обеспечения отопления и электроэнергии), а также в разрушительном ядерном оружии и водородных бомбах. В термодинамике (раздел ) существует понятие внутренней энергии - суммы энергий тепловых движений и молекулярных взаимодействий. Это далеко не весь форм энергии.

С понятием энергии связана теория относительности Эйнштейна, согласно которой есть связь между и массой. Она выражена в формуле E = mc2: энергия системы (E) равна ее массе (m), умноженной на скорость света в квадрате (c2). Под массой принято понимать массу тела в состоянии покоя, а под энергией - внутреннюю энергию системы.

A=Fs=Fт*h=mgh, или Eп=mgh, где:
Eп - потенциальная энергия тела,
m - масса тела,
h - высота тела над поверхностью земли,
g - ускорение свободного падения.

Два вида потенциальной энергии

У потенциальной энергии различается два вида:

1. Энергия при взаимном расположении тел. Такой энергией обладает подвешенный камень. Интересно, но потенциальной энергией обладают и обычные дрова или уголь. В них содержится не окисленный углерод, который может окислиться. Если сказать проще, сгоревшие дрова потенциально могут нагреть воду.

2. Энергия упругой деформации. Для примера здесь можно привести эластичный жгут, сжатую пружину или система «кости-мышцы-связки».

Потенциальная и кинетическая энергия взаимосвязаны. Они могут переходит друг в друга. К примеру, если камень вверх, при движении сначала он обладает кинетической энергией. Когда он достигнет определенной точки, то на мгновение замрет и получит потенциальную энергию, а затем гравитация потянет его вниз и снова возникнет кинетическая энергия.

Источники:

  • Потенциальная и кинетическая энергия

Слово «энергия» в переводе с греческого означает «действие». Энергичным мы называем человека, который активно двигается, производя при этом множество разнообразных действий.

Энергия в физике

И если в жизни энергию человека мы можем оценивать в основном по последствиям его деятельности, то в физике энергию можно измерять и изучать множеством различных способов. Ваш бодрый друг или сосед, скорее всего, откажется повторить тридцать-пятьдесят раз одно и то же действие, когда вдруг вам взбредет на ум исследовать феномен его энергичности.

А вот в физике вы можете повторять почти любые опыты сколь угодно много раз, производя необходимые вам исследования. Так и с изучением энергии. Ученые-исследователи изучили и обозначили множество видов энергии в физике. Это электрическая, магнитная, атомная энергия и так далее. Но сейчас мы поговорим о механической энергии. А конкретнее о кинетической и потенциальной энергии.

Кинетическая и потенциальная энергия

В механике изучают движение и взаимодействие тел друг с другом. Поэтому принято различать два вида механической энергии: энергию, обусловленную движением тел, или кинетическую энергию, и энергию, обусловленную взаимодействием тел, или потенциальную энергию.

В физике существует общее правило, связывающее энергию и работу. Чтобы найти энергию тела, надо найти работу, которая необходима для перевода тела в данное состояние из нулевого, то есть такого, при котором его энергия равна нулю.

Потенциальная энергия

В физике потенциальной энергией называют энергию, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела. То есть, если тело поднято над землей, то оно обладает возможностью падая, произвести какую-либо работу.

И возможная величина этой работы будет равна потенциальной энергии тела на высоте h. Для потенциальной энергии формула определяется по следующей схеме:

A=Fs=Fт*h=mgh, или Eп=mgh,

где Eп потенциальная энергия тела,
m масса тела,
h - высота тела над поверхностью земли,
g ускорение свободного падения.

Причем за нулевое положение тела может быть принято любое удобное нам положение в зависимости от условий проводимых опыта и измерений, не только поверхность Земли. Это может быть поверхность пола, стола и так далее.

Кинетическая энергия

В случае, когда тело движется под влиянием силы, оно уже не только может, но и совершает какую-то работу. В физике кинетической энергией называется энергия, которой обладает тело вследствие своего движения. Тело, двигаясь, расходует свою энергию и совершает работу. Для кинетической энергии формула рассчитывается следующей образом:

A = Fs = mas = m * v / t * vt / 2 = (mv^2) / 2 , или Eк= (mv^2) / 2 ,

где Eк кинетическая энергия тела,
m масса тела,
v скорость тела.

Из формулы видно, что чем больше масса и скорость тела, тем выше его кинетическая энергия.

Каждое тело обладает либо кинетической, либо потенциальной энергией, либо и той, и другой сразу, как, например, летящий самолет.

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.


«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.


Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.


Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа - во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.


Энергия из тепла человека

Принцип термоэлектрических генераторов , работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.


Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.


Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.


Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод , загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала - не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.


«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало - его хватает лишь на питание небольших портативных гаджетов.