Эффект запоминания. Эффект запоминания формы и мини-энергетика

Выдержка из книги доктора техн.наук, сотрудника Института Океанологии Академии Наук СССР (имени Ширшова)
Н.В.Вершинского "Энергия океана" Изд."Наука" 1986г.

ЭЗФ - эффект запоминания формы - физическое явление, впервые обнаруженное советскими учеными - академиком Г. В. Курдюмовым и Л. Г. Хондросом в 1949 г. Эффект запоминания формы наблюдается в особых сплавах и заключается в том, что детали из них восстанавливают после деформации свою начальную форму при тепловом воздействии. Например, если пластинку из сплава нитинол согнуть в холодном состоянии в дугу, то она будет сохранять эту форму сколь угодно долго. Но достаточно согнутую пластинку немного подогреть - она тут же выпрямится, как хорошая пружина. При нагревании пластина из нитинола возвращается к своей первоначальной форме, которая была ей придана при изготовлении, точнее - при закалке (отжиге).

Широкую известность получил опыт с несматывающейся проволокой: тонкую длинную проволоку из нитинола нельзя свить в моток, она тут же разматывается. Когда изделие из нитинола возвращается к первоначальной форме, при этом развивается достаточно большое усилие: до 55 т на каждый квадратный дюйм сечения детали.

Можно сказать и так: эффект памяти формы заключается в способности особых сплавов накапливать под воздействием внешнего механического напряжения довольно значительную деформацию, обратимую при нагреве. В зависимости от типа сплава деформация может достигать 10-15 % и выше. Парадокс заключается в том, что при восстановлении первоначальной формы может совершаться работа, значительно превосходящая ту, которая была затрачена на деформацию в холодном состоянии. Однако парадокс этот кажущийся. Противоречия закону сохранения энергии здесь нет. Для восстановления первоначальной формы деталь необходимо подогреть, т. е. затратить некоторое количество тепловой энергии. И оно всегда будет больше произведенной работы. Если создать тепловую машину, где в качестве рабочего тела будет применяться сплав, обладающий эффектом запоминания формы, то КПД такой машины, как и всякой другой, будет меньше единицы. По этому поводу физик Э. Раушер заметил, что в законах термодинамики нет никаких ошибок, просто они не объясняют того, что происходит в нитиноле.

Физика эффекта запоминания формы основана на фазовых превращениях в особых сплавах. Мы говорили о нитиноле. Но есть и другие подобные сплавы, правда, нитинол - лучший из них. Он представляет собой соединение никеля с титаном, известное также под названием моно- никелида титана. Его химическая формула TiNi. В этом соединении наиболее ярко проявляется способность запоминания формы, что непосредственно связано с особенностями изменения строения кристаллической решетки этого сплава при фазовых переходах.

Кристаллическая решетка нитинола может находиться в одной из двух форм: либо в виде объемно-центрированного куба (ОЦК), такое состояние решетки называется аустенитной формой; либо в виде ромбовидной структуры с центрированными гранями (РГЦ) - мартенситная форма. Переход объемно-центрированного куба в гранецентрированный ромб называется прямым мартенситным превращением, а переход структуры РГЦ в структуру ОЦК - обратным мартенситным превращением. На превращениях этих двух различных кристаллических структур и основано явление эффекта запоминания формы. Его называют также термоупругим мартенситным превращением, или переходом мартенсит-аустенит и обратно.

Схема фазовых превращений в нитиноле при изменениях температуры. Количество мартенсита в нитиноле в зависимости от температуры. Проследим за поведением пластинки из нитинола.

Пусть нитиноловая пластинка первоначально находится при температуре, обозначенной точкой М„ которая соответствует температуре начала прямого мартенситного превращения. При дальнейшем охлаждении пластинки количество мартенсита будет возрастать до точки Ag, т. е. температуры конца прямого мартенситного превращения. Это самая холодная точка, здесь нитиноловая пластинка легко сгибается в дугу.

Дальше следует процесс нагрева, приводящий к обратному мартенситному превращению, т. е. к образованию аустенита. Начало этого процесса отмечено точкой Ад. По достижении пластинкой температуры, соответствующей этой точке, количество мартенсита в ней начинает резко падать. Процесс уменьшения количества мартенсита идет с повышением температуры по наклонной прямой Ад-Ад. На этом участке фазовой диаграммы происходит распрямление пластинки. Скорость выпрямле- ния зависит от быстроты нагрева. Точка А, соответствует температуре конца обратного мартенситного превращения.

Температура начала обратного мартенситного превращения (точка Ад) ниже температуры начала прямого мартенситного превращения (точка Ag) при охлаждении. Это важное обстоятельство связано с наличием деформации, т. е. изгибом пластинки. Накопленная в пластинке из нитинола энергия деформации за счет изгиба действует в том же направлении, что и нагрев. Поэтому обратной превращение начинается при более низкой температуре. Этому содействует упругая энергия в изогнутой пластинке, не проявлявшаяся до достижения пластинкой температуры, соответствующей точке Ад. В этом заключается существенная термодинамическая особенность сплавов с ЭЗФ.

Отметим еще одно важное отличие этих сплавов. Температурные интервалы, в которых происходит перестройка решетки у сплавов с ЭЗФ, значительно меньше, нежели у обычных сплавов, не обладающих памятью. Это обстоятельство имеет решающее значенue в рассматриваемом вами случае. Необходимость лишь в относительно малых изменениях температуры для обеспечения перестройки кристаллической решетки открывает широкие перспективы практического использования эффекта запоминания формы.

Явление ЭЗФ в наше время находит различные применения, в том числе для создания нового тина тепловых двигателей, способных работать от тепловых источников низкопотенциального типа. Если диапазон температуры фазовых превращений будет находиться в пределах температурного градиента, имеющегося в Мировом океане, то нитинол можно использовать в качестве твердого рабочего тела тепловой машины. Вместо аммиака или фреона - нитинол. Схема энергетической установки в этом случае полностью меняется. Применение нитинола открывает новый путь преобразования тепловой энергии океана.

Все известные ранее установки для преобразования тепловой энергии океана в механическую работу, а затем - в электрическую энергию основаны на применении турбин, приводимых в действие парами тех или иных жидкостей с низкой температурой кипения. Чтобы подобные системы были рентабельными, они должны иметь достаточно большую мощность. Капитальные затраты на их строительство весьма значительны, кроме того, они не свободны от недостатков, например - потери энергии в сетях распределения и обслуживания (до 10 %) и, как следствие, удорожание отпускной цены на электроэнергию (до 50 %). Такого рода соображения приводит изобретатель нитинолового теплового двигателя Р. Бэнкс в пользу маломощных преобразователей (дело в том, что в свое время он не видел конкретных путей создания мощных мегаваттных преобразователей, основанных на ЭЗФ).

Построенный Бэнксом маломощный тепловой двигатель на нитиноле непрерывно устойчиво работал, сделав более 1,7-107 оборотов, и развивал мощность не менее 0,2 Вт, приводя во вращение генератор электрической энергии - от него горела электрическая лампочка.

Кинематическая схема двигателя Бэнкса представлена на рис. 1.

Рис. 1. Нитиноловый двигатель Бэнкса
1 - неподвижный вал, 2 - вращающийся вал, 3 - неподвижный кривошип, 4 - нитиноловая проволочная петля, 5 - движущий стержень, 6 - начало рабочего хода, 1-горячая сторона, 8-холодная сторона, 9-движущееся колесо, 10 - конец рабочего хода, 11 - стопор движущего стержня, 12 - направление силы от действия проволочной петли из нитинола, 13 - компонента сплы, вызывающая вращение, 14 - ступица движущегося колеса

Под действием энергии нитиноловых проволок в горизонтальной плоскости вращается колесо 9, являющееся маховиком и одновременно шкивом привода электрического генератора (последний на рисунке не показан). Колесо-маховик диаметром 350 мм имеет 20 стержней- спиц 5, на которых подвешены петли из нитиноловой проволоки диаметром 1,2 мм, длиной по 152 мм. Число нитиноловых петель равно числу стержней-спиц, т. е. их также 20 штук, на рисунке они все обозначены цифрой 4.

Нитиноловые проволочные петли висят между ободом колеса 9 и втулками 11 на стержнях 5. Втулки способны перемещаться вдоль стержней под действием усилий, развиваемых нитиноловыми петлями. При вращении колеса вокруг неподвижного коленчатого вала 3 происходит увеличение или уменьшение расстояния между втулками и ободом колеса. Одновременно при вращении колеса изменяется положение нитиноловых петель относительно двух неподвижных полукруглых ванн с холодной и теплой водой, расположенных непосредственно под колесом 9. Температура воды в холодной ванне 24 °С, в горячей 48 °С, т. е. используемая разность температур составляет 24 °С.

Нитиноловая проволока (марки нитинол-55) для петель при закалке была прямой, поэтому при нагреве в горячей ванне петли стремятся распрямиться. Когда очередная петля погружается в ванну с горячей водой, она стремится разогнуться, при этом часть энергии каждой петли расходуется на раскручивание колеса 9. В «горячем» полупериоде расстояние между ободом колеса и втулками увеличивается в результате действия силы, распрямляющей петли. Поэтому на ободе колеса возникает вращающий момент относительно неподвижного вала 1. Он возникает благодаря тому, что центры вращения стержней- спиц 5 и колеса 9 разнесены между собой на 25 мм. Цифра эта соответствует расстоянию между осями неподвижного вала 1 и осью его кривошипа 3, т. е. высоте колена кривошипа. Стержни-спицы своими центральными концами связаны с шейкой кривошипа, поэтому, когда колесо вращается, они совершают возвратно-поступательные движения.

Стержни 5 действительно похожи на спицы, но их назначение не имеет ничего общего с обычным назначением спиц в колесе. Скорее, они выполняют роль шатунов в своеобразном кривошипно-шатунном механизме этого двигателя. Обод колеса 9 со всеми деталями поддерживается ступицей 14, сидящей на вращающемся пустотелом валу 2. Этот вал вращается вместе с колесом 9 вокруг неподвижного главного вала 1.

Длительные испытания этого двигателя не выявили никаких следов усталости у нитиноловых петель, более того, после нескольких сотен тысяч оборотов колесо стало вращаться быстрее. Восстановление формы повторялось десятки миллионов раз. Такие результаты объясняются достаточно малой деформацией -порядка 0,5 %.

После работы двигателя в течение нескольких часов наблюдается развитие запоминания «холодной формы». Когда проволочные петли из нитинола при вращении колеса погружались очередной раз в ванну с холодной водой, они сгибались самопроизвольно, без приложения усилия. Этот новый эффект назван двойной тренировкой, или двойной памятью. Эффект двойной памяти пока не получил достаточно удовлетворительного теоретического объяснения, но ясно, что он должен привести к увеличению чистой выходной мощности нитинолового двигателя.

Первый опыт по превращению солнечной энергии в электрическую с помощью нитинолового двигателя Бэнкс произвел в ноябре 1973 г.: вода для горячей ванны подогревалась солнечными лучами. С тех пор работы по исследованию нитинола и его применению сильно расширились и ведутся в лабораториях Великобритании, Швейцарии, Бельгии, ФРГ, Японии. В США создан Нитиноловый технологический центр. Проведена Международная конференция по нитиноловым тепловым двигателям, к 1981 г. было опубликовано 400 научных сообщений на эту тему, выданы патенты на более чем 100 нитиноловых установок, в том числе на 12 тепловых двигателей.

Некоторые исследователи считают, что нитиноловые двигатели смогут преобразовывать энергию более экономично, чем фотоэлектрические элементы. Д. Гольштейн, возглавляющий Нитиноловый технологический центр, полагает, что при работе нитинолового двигателя круглые сутки он сможет окупить себя за 18-24 месяца, после чего вырабатываемая им энергия будет «в некотором смысле бесплатной».

Сообщается о разработке новой марки нитинола, в которой фазовые переходы совершаются при температуре 9 °С. Такой градиент легко получить от солнечных коллекторов или источников геотермальных вод, что обеспечит работу нитиноловых двигателей для различных целей, в том числе для привода ирригационных насосов в районах, где нет централизованных сетей. Нитиноловые двигатели могут также использовать отработанное тепло, преобразуя его в полезную работу (в отработанное тепло уходит до двух третей всей энергии, потребляемой про- мышленными предприятиями). Изучается возможность создания ряда нитиноловых двигателей, рассчитанных на работу при постепенно понижающихся температурах горячей воды. Такой ряд двигателей может устанавливаться по потоку горячей воды, сбрасываемой промышленными предприятиями. При этом будет не только рекуперироваться часть анергии, но и предотвращаться тепловое загрязнение водоемов.

Создание ряда нитиноловых двигателей с постепенно понижающимся средним значением температуры рабочего интервала принципиально возможно путем изменения отношения в сплаве между никелем и титаном. Например, если сплав состоит из 55 % никеля и 45 % титана, то его фазовые переходы, т. е. способность восстанавливать форму, находятся в диапазоне комнатных температур. Но при небольшом увеличении содержания титана эффект запоминания формы в сплаве будет проявляться при температуре более 120 °С. Подбирая подходящее соотношение между содержанием никеля и титана, ученые надеются решить эту задачу.

Естественными источниками тепловой энергии для нитиноловых двигателей являются океаны, моря, озера и водохранилища. Оптимальный перепад температуры для нитиноловых двигателей близок к 20 °С, что соответствует градиенту, наблюдающемуся в океанах. Кстати, подобный градиент легко обеспечить и в искусственных условиях, например, в так называемых солнечных прудах. Речь идет о развивающемся способе аккумуляции солнечной энергии в прудах с подсоленной водой. В этом случае нитиноловые двигатели будут превращать запасенную тепловую энергию в механическую работу или электричество. Ближайшее будущее покажет, насколько успешно новые преобразователи смогут соревноваться с другими типами преобразователей тепловой энергии.

По оценке отдельных авторов, КПД нитиноловых двигателей в может составлять 5-6 % (А. А. Гольштейн), теоретический же расчет по формуле, приведенной в работе С. М. Веймана, дает КПД в интервале от 5 до 21 % в зависимости от свойств используемого материала. В настоящее время ведутся работы по сравнению экспериментально и теоретически полученных величин КПД.

Что значит «запомнить в долговременную память »?

Это во-первых — запомнить, а во-вторых — повторить! Вот от этого и будем плясать 🙂

Данная статья носит обзорный характер и показывает основные способы запоминания и повторения, которые существуют. Каждому из этих способов будет уделена отдельная статья.

Запоминание и повторение

В своих тренингах и семинарах я регулярно повторяю, что процесс запоминания и повторения — разные. Чаще всего информацию пытаются запомнить зазубрив, а повторить — еще раз считывая, просматривая, прослушивая ее.

Это самый доступный и неэффективный способ.

В этой статье хочу осветить основные стратегии запоминания в долговременную память и их эффективность.

Если НЕ использовать техники запоминания, то достаточно сложно как-то разграничить процессы запоминания и повторения.

Например, я помню, как в школьные годы учил различные стихи, определения по физике, химии — это выглядело примерно так:

  1. берешь учебник, читаешь определение, стараешься понять о чем, вообще, написано.
  2. пытаешься повторить первую фразу определения, проговаривая ее много раз про себя (иногда, вслух) Повторяешь до тех пор, пока не кажется, что запомнил.
  3. далее переходишь к следующей фразе и так же вслух ее много раз повторяешь. Далее пытаешься повторить много раз обе фразы вместе. Шаги 3-4 повторяются до тех пор, пока не зазубривается все определение
  4. на следующий день пытаешься вспомнить. Как правило, какой-то кусочек определения забылся. Тогда — открываешь учебник, читаешь определение несколько раз, параллельно проговаривая про себя всё определение. Иногда даже создается ощущение — «Всё! Теперь точно запомнил!». Но после обнаруживается (обычно в самый ответственный момент), что тот кусочек все-таки не повторился должным образом.

Примерно так выглядели процессы запоминания и повторения, которые я обозначил зубрежкой и считыванием соответственно.

У большинства людей это происходит абсолютно так же.

По-другому же нас не учили запоминать?

Когда вы запоминаете информацию осознанно, кодируя её в визуальные образы, то здесь есть четкое отличие процессов повторения от запоминания.

Давайте я дам определения этих процессов:

  • Зубрежка — многократное повторение информации
  • Считывание — процесс восприятия информации с текстового, аудио, видео носителя.
  • Запоминание — создание связей между элементами воспринимаемой информации
  • Вспоминание — процесс активизации из памяти связей, созданных ранее (БЕЗ подглядывания в источник информации: книгу, видео, аудиозапись)
  • — то же, что и вспоминание, но выполняется в определенные промежутки времени.


Хотите прямо сейчас улучшить свою память? Получите руководство по развитию памяти от рекордсмена России! Скачайте бесплатно методичку :

Таблица эффективности запоминания

Теперь, когда вы понимаете, чем отличаются выше описанные процессы, я представляю вам свою таблицу эффективности запоминания информации в долговременную память.

Она состоит из совокупности способ запоминания и повторения информации.

Сочетание способов расположено в порядке увеличения эффективности запоминания в долговременную память.

Все эти этапы проверены на собственном опыте, а так же студентами моих курсов.

  1. Зубрежка + считывание
  2. Зубрежка + вспоминание
  3. Зубрежка + интервальное повторение
  4. Мнемотехники + считывание
  5. Мнемотехники + вспоминание
  6. Мнемотехники + интервальное повторение

Таблица эффективности способов запоминания в долговременную память

Красным — запоминание
Синим — повторение
Цифры по возрастанию — эффективность совокупности приемов

Прокомментирую, почему именно такая таблица и почему лидер в ней — совокупность «мнемотехника»+»интервальное повторение».

Считывание информации дает вам практически нулевую полезность в плане запоминания. Если вы хотите повторить и запомнить надолго, то повторяйте только по памяти (процесс «вспоминание»)! Отвернитесь от листочка, компьютера, книги и попытайтесь самостоятельно извлечь данные, которые вы пытаетесь запомнить.

Если же вам это не удается сделать целиком, то подглядите в источник информации. Но! После обязательно повторите по памяти, не опираясь на источник.

Когда вы вспоминаете информацию, а не считываете, в мозгу активизируются связи, созданные при запоминании. Чем чаще они активизируются, тем прочнее они становятся и информация запоминается лучше. При простом считывании связи активизируются по минимуму.

Вспоминание в разы эффективнее и по сути единственное правильное повторение. Интервальное повторение (о нем поговорим позже) просто экономит вам еще больше времени при запоминании в долговременную память, но основа все та же — повторение по памяти.

С повторением разобрались. Теперь про запоминание.

Вообще, про запоминание у меня есть целый сайт — вот этот)) На котором вы сейчас находитесь. И весь это сайт посвящен тому, как эффективно запоминать. Совокупность приемов и техник эффективного запоминания называется «мнемотехника». Преимущественно это техники запоминания на основе представления информации в виде ярких визуальных образов и создания связи между ними.

Мнемотехника и программа ANKI

Что касается интервального повторения, то о нем будет отдельная подробная статья, вкратце опишу, почему это лучше.

Представьте, вы запомнили таблицу Менделеева. Чтобы вспомнить через 1 год вам нужно ее периодически повторять. Но когда именно? Первое, что приходит в голову — например, 1 раз в неделю. Это 52 раза в год.

Рабочая схема? Рабочая.

Но нюанс в том, что на практике вам не обязательно повторять ее так часто. Через несколько повторений, например 12-15 вы поймете, что знаете ее уже назубок.

Вопрос «Зачем тогда вам продолжать её так часто повторять? »

Этот вопрос, как раз и закрывает «интервальное повторение» . Оно позволяет вам повторять нужную информацию только в те промежутки времени, когда она может забыться и с таким минимальным количеством повторений, чтобы через 1-3-5 лет информация осталась у вас в памяти.

На данный момент лучшая программа, которая позволяет повторять вам информацию по принципу интервального повторения — ANKI. В нее в виде карточек вы загружаете интересующие вас данные и периодически (программа сама выдает информацию в нужное время) повторяете.

Мнемотехника в сочетании с интервальным повторением (программа ANKI) — это убойная вещь!

Конечно, «убойная» в плане эффективного обучения 🙂

Сами по себе они являются лучшими среди аналогичных приемов (мнемотехника лучше зубрежки, а интервальное повторение лучше ежедневного беспорядочного вспоминания)

Мнемотехника лучшее в запоминании!
ANKI (интервальное повторение) лучшее в повторении!

Поэтому связка «мнемотехники + интервальное повторение» дает наибольшую эффективность при запоминании в долговременную память.

Если у вас есть альтернативы, как сделать процесс запоминания на длинных временных дистанциях еще эффективнее или у вас остались вопросы, то пишите в комментарии.

Нитиноловый тепловой двигатель Бенкса

ЭЗФ — эффект запоминания формы — физическое явление, впервые обнаруженное советскими учеными — академиком Г. В. Курдюмовым и Л. Г. Хондросом в 1949 г. Эффект запоминания формы наблюдается в особых сплавах и заключается в том, что детали из них восстанавливают после деформации свою начальную форму при тепловом воздействии. Например, если пластинку из сплава нитинол согнуть в холодном состоянии в дугу, то она будет сохранять эту форму сколь угодно долго. Но достаточно согнутую пластинку немного подогреть — она тут же выпрямится, как хорошая пружина. При нагревании пластина из нитинола возвращается к своей первоначальной форме, которая была ей придана при изготовлении, точнее — при закалке (отжиге).

Широкую известность получил опыт с несматывающейся проволокой: тонкую длинную проволоку из нитинола нельзя свить в моток, она тут же разматывается. Когда изделие из нитинола возвращается к первоначальной форме, при этом развивается достаточно большое усилие: до 55 т на каждый квадратный дюйм сечения детали.

Двигатель Бэнкса,Нитиноловый тепловой двигатель бенкса,тепловой двигатель Бэнкса,ЭЗФ,эффект запоминания формы, проекты изобретения

Можно сказать и так: эффект памяти формы заключается в способности особых сплавов накапливать под воздействием внешнего механического напряжения довольно значительную деформацию, обратимую при нагреве. В зависимости от типа сплава деформация может достигать 10—15 % и выше. Парадокс заключается в том, что при восстановлении первоначальной формы может совершаться работа, значительно превосходящая ту, которая была затрачена на деформацию в холодном состоянии. Однако парадокс этот кажущийся. Противоречия закону сохранения энергии здесь нет. Для восстановления первоначальной формы деталь необходимо подогреть, т. е. затратить некоторое количество тепловой энергии. И оно всегда будет больше произведенной работы. Если создать тепловую машину, где в качестве рабочего тела будет применяться сплав, обладающий эффектом запоминания формы, то К.П.Д. такой машины, как и всякой другой, будет меньше единицы. По этому поводу физик Э. Раушер заметил, что в законах термодинамики нет никаких ошибок, просто они не объясняют того, что происходит в нитиноле.

Физика эффекта запоминания формы основана на фазовых превращениях в особых сплавах. Мы говорили о нитиноле. Но есть и другие подобные сплавы, правда, нитинол — лучший из них. Он представляет собой соединение никеля с титаном, известное также под названием моно- никелида титана. Его химическая формула TiNi. В этом соединении наиболее ярко проявляется способность запоминания формы, что непосредственно связано с особенностями изменения строения кристаллической решетки этого сплава при фазовых переходах.

Кристаллическая решетка нитинола может находиться в одной из двух форм: либо в виде объемно-центрированного куба (ОЦК), такое состояние решетки называется аустенитной формой; либо в виде ромбовидной структуры с центрированными гранями (РГЦ) — мартенситная форма. Переход объемно-центрированного куба в гранецентрированный ромб называется прямым мартенситным превращением, а переход структуры РГЦ в структуру ОЦК — обратным мартенситным превращением. На превращениях этих двух различных кристаллических структур и основано явление эффекта запоминания формы. Его называют также термоупругим мартенситным превращением, или переходом мартенсит—аустенит и обратно.

Схема фазовых превращений в нитиноле при изменениях температуры. Количество мартенсита в нитиноле в зависимости от температуры. Проследим за поведением пластинки из нитинола.

Пусть нитиноловая пластинка первоначально находится при температуре, обозначенной точкой М„ которая соответствует температуре начала прямого мартенситного превращения. При дальнейшем охлаждении пластинки количество мартенсита будет возрастать до точки Ag, т. е. температуры конца прямого мартенситного превращения. Это самая холодная точка, здесь нитиноловая пластинка легко сгибается в дугу.

Дальше следует процесс нагрева, приводящий к обратному мартенситному превращению, т. е. к образованию аустенита. Начало этого процесса отмечено точкой Ад. По достижении пластинкой температуры, соответствующей этой точке, количество мартенсита в ней начинает резко падать. Процесс уменьшения количества мартенсита идет с повышением температуры по наклонной прямой Ад—Ад. На этом участке фазовой диаграммы происходит распрямление пластинки. Скорость выпрямле- ния зависит от быстроты нагрева. Точка А, соответствует температуре конца обратного мартенситного превращения.

Температура начала обратного мартенситного превращения (точка Ад) ниже температуры начала прямого мартенситного превращения (точка Ag) при охлаждении. Это важное обстоятельство связано с наличием деформации, т. е. изгибом пластинки. Накопленная в пластинке из нитинола энергия деформации за счет изгиба действует в том же направлении, что и нагрев. Поэтому обратной превращение начинается при более низкой температуре. Этому содействует упругая энергия в изогнутой пластинке, не проявлявшаяся до достижения пластинкой температуры, соответствующей точке Ад. В этом заключается существенная термодинамическая особенность сплавов с ЭЗФ.

Отметим еще одно важное отличие этих сплавов. Температурные интервалы, в которых происходит перестройка решетки у сплавов с ЭЗФ, значительно меньше, нежели у обычных сплавов, не обладающих памятью. Это обстоятельство имеет решающее значенue в рассматриваемом вами случае. Необходимость лишь в относительно малых изменениях температуры для обеспечения перестройки кристаллической решетки открывает широкие перспективы практического использования эффекта запоминания формы.

Явление ЭЗФ в наше время находит различные применения, в том числе для создания нового тина тепловых двигателей, способных работать от тепловых источников низкопотенциального типа. Если диапазон температуры фазовых превращений будет находиться в пределах температурного градиента, имеющегося в Мировом океане, то нитинол можно использовать в качестве твердого рабочего тела тепловой машины. Вместо аммиака или фреона — нитинол. Схема энерго установки в этом случае полностью меняется. Применение нитинола открывает новый путь преобразования тепловой энергии океана.

Все известные ранее установки для преобразования тепловой энергии океана в механическую работу, а затем — в электрическую энергию основаны на применении турбин, приводимых в действие парами тех или иных жидкостей с низкой температурой кипения. Чтобы подобные системы были рентабельными, они должны иметь достаточно большую мощность. Капитальные затраты на их строительство весьма значительны, кроме того, они не свободны от недостатков, например — потери энергии в сетях распределения и обслуживания (до 10 %) и, как следствие, удорожание отпускной цены на электроэнергию (до 50 %). Такого рода соображения приводит изобретатель нитинолового теплового двигателя Р. Бэнкс в пользу маломощных преобразователей (дело в том, что в свое время он не видел конкретных путей создания мощных мегаваттных преобразователей, основанных на ЭЗФ).

Нитиноловый двигатель

Построенный Бэнксом маломощный тепловой двигатель на нитиноле непрерывно устойчиво работал, сделав более 1,7-107 оборотов, и развивал мощность не менее 0,2 Вт, приводя во вращение генератор электрической энергии — от него горела электрическая лампочка.

Кинематическая схема двигателя Бэнкса представлена на рисунке

Рисунок. Нитиноловый двигатель Бэнкса
1 — неподвижный вал, 2 — вращающийся вал, 3 — неподвижный кривошип, 4 — нитиноловая проволочная петля, 5 — движущий стержень, 6 — начало рабочего хода, 1—горячая сторона, 8—холодная сторона, 9—движущееся колесо, 10 — конец рабочего хода, 11 — стопор движущего стержня, 12 — направление силы от действия проволочной петли из нитинола, 13 — компонента сплы, вызывающая вращение, 14 — ступица движущегося колеса

Под действием энергии нитиноловых проволок в горизонтальной плоскости вращается колесо 9, являющееся маховиком и одновременно шкивом привода электрического генератора (последний на рисунке не показан). Колесо-маховик диаметром 350 мм имеет 20 стержней- спиц 5, на которых подвешены петли из нитиноловой проволоки диаметром 1,2 мм, длиной по 152 мм. Число нитиноловых петель равно числу стержней-спиц, т. е. их также 20 штук, на рисунке они все обозначены цифрой 4.

Двигатель Бэнкса,Нитиноловый тепловой двигатель бенкса,тепловой двигатель Бэнкса,ЭЗФ,эффект запоминания формы, проекты изобретения


Эффект запоминания формы и мини-энергетика, основанная на этом эффекте.

ЭЗФ - эффект запоминания формы - физическое явление, впервые обнаруженное советскими учеными - академиком Г. В. Курдюмовым и Л. Г. Хондросом в 1949 г. Эффект запоминания формы наблюдается в особых сплавах и заключается в том, что детали из них восстанавливают после деформации свою начальную форму при тепловом воздействии. Например, если пластинку из сплава нитинол согнуть в холодном состоянии в дугу, то она будет сохранять эту форму сколь угодно долго. Но достаточно согнутую пластинку немного подогреть - она тут же выпрямится, как хорошая пружина. При нагревании пластина из нитинола возвращается к своей первоначальной форме, которая была ей придана при изготовлении, точнее - при закалке (отжиге).

Широкую известность получил опыт с несматывающейся проволокой: тонкую длинную проволоку из нитинола нельзя свить в моток, она тут же разматывается. Когда изделие из нитинола возвращается к первоначальной форме, при этом развивается достаточно большое усилие: до 55 т на каждый квадратный дюйм сечения детали.

Можно сказать и так: эффект памяти формы заключается в способности особых сплавов накапливать под воздействием внешнего механического напряжения довольно значительную деформацию, обратимую при нагреве. В зависимости от типа сплава деформация может достигать 10-15 % и выше. Парадокс заключается в том, что при восстановлении первоначальной формы может совершаться работа, значительно превосходящая ту, которая была затрачена на деформацию в холодном состоянии. Однако парадокс этот кажущийся. Противоречия закону сохранения энергии здесь нет. Для восстановления первоначальной формы деталь необходимо подогреть, т. е. затратить некоторое количество тепловой энергии. И оно всегда будет больше произведенной работы. Если создать тепловую машину, где в качестве рабочего тела будет применяться сплав, обладающий эффектом запоминания формы, то КПД такой машины, как и всякой другой, будет меньше единицы. По этому поводу физик Э. Раушер заметил, что в законах термодинамики нет никаких ошибок, просто они не объясняют того, что происходит в нитиноле.

Физика эффекта запоминания формы основана на фазовых превращениях в особых сплавах. Мы говорили о нитиноле. Но есть и другие подобные сплавы, правда, нитинол - лучший из них. Он представляет собой соединение никеля с титаном, известное также под названием моно- никелида титана. Его химическая формула TiNi. В этом соединении наиболее ярко проявляется способность запоминания формы, что непосредственно связано с особенностями изменения строения кристаллической решетки этого сплава при фазовых переходах.

Кристаллическая решетка нитинола может находиться в одной из двух форм: либо в виде объемно-центрированного куба (ОЦК), такое состояние решетки называется аустенитной формой; либо в виде ромбовидной структуры с центрированными гранями (РГЦ) - мартенситная форма. Переход объемно-центрированного куба в гранецентрированный ромб называется прямым мартенситным превращением, а переход структуры РГЦ в структуру ОЦК - обратным мартенситным превращением. На превращениях этих двух различных кристаллических структур и основано явление эффекта запоминания формы. Его называют также термоупругим мартенситным превращением, или переходом мартенсит-аустенит и обратно.

Схема фазовых превращений в нитиноле при изменениях температуры. Количество мартенсита в нитиноле в зависимости от температуры. Проследим за поведением пластинки из нитинола.

Пусть нитиноловая пластинка первоначально находится при температуре, обозначенной точкой М„ которая соответствует температуре начала прямого мартенситного превращения. При дальнейшем охлаждении пластинки количество мартенсита будет возрастать до точки Ag, т. е. температуры конца прямого мартенситного превращения. Это самая холодная точка, здесь нитиноловая пластинка легко сгибается в дугу.

Дальше следует процесс нагрева, приводящий к обратному мартенситному превращению, т. е. к образованию аустенита. Начало этого процесса отмечено точкой Ад. По достижении пластинкой температуры, соответствующей этой точке, количество мартенсита в ней начинает резко падать. Процесс уменьшения количества мартенсита идет с повышением температуры по наклонной прямой Ад-Ад. На этом участке фазовой диаграммы происходит распрямление пластинки. Скорость выпрямле- ния зависит от быстроты нагрева. Точка А, соответствует температуре конца обратного мартенситного превращения.

Температура начала обратного мартенситного превращения (точка Ад) ниже температуры начала прямого мартенситного превращения (точка Ag) при охлаждении. Это важное обстоятельство связано с наличием деформации, т. е. изгибом пластинки. Накопленная в пластинке из нитинола энергия деформации за счет изгиба действует в том же направлении, что и нагрев. Поэтому обратной превращение начинается при более низкой температуре. Этому содействует упругая энергия в изогнутой пластинке, не проявлявшаяся до достижения пластинкой температуры, соответствующей точке Ад. В этом заключается существенная термодинамическая особенность сплавов с ЭЗФ.

Некоторые эффекты и законы памяти

Эффект Зейгарник

Заключается в следующем. Если людям предложить серию заданий и одни из них позволить довести до конца, а другие прервать незавершенными, то окажется, что впоследствии испытуемые почти в два раза чаще вспоминают незавершенные задания, чем завершенные к моменту прерывания. Это объясняется тем, что при получении задания у испытуемого появляется потребность выполнить его, которая усиливается в процессе выполнения задания. Эта потребность полностью реализует себя, когда задание выполнено, и остается, неудовлетворенной, если оно не доведено до конца. В силу связи между мотивацией и памятью первая влияет на избирательность памяти, сохраняя в ней следы незавершенных заданий. Можно сделать вывод: человек непроизвольно удерживает в своей памяти и в первую очередь (тоже непроизвольно) воспроизводит то, что отвечает его наиболее актуальным, но не вполне еще удовлетворенным потребностям.

Эффект Смирнова

В своих исследованиях А. А. Смирнов установил, что действия запоминаются лучше, чем мысли, а среди действий, в свою очередь, прочнее запоминаются те, которые связаны с преодолением препятствий, в том числе и сами эти препятствия.

Эффект края

При запоминании ряда однородной информации лучше всего по памяти воспроизводится его начало и конец.

Эффект реминисценции

Улучшение со временем воспроизведения заученного материала без дополнительных его повторений. Чаще всего это явление наблюдается при распределении повторений материала в процессе его заучивания, а не при запоминании сразу наизусть. Отсроченное на несколько дней (2 - 3 дня) воспроизведение нередко дает лучшие результаты, чем воспроизведение материала сразу после его заучивания. Реминисценция, вероятно, объясняется тем, что со временем логические, смысловые связи, образующиеся внутри заучиваемого материала, упрочиваются, становятся более ясными, очевидными.

Эффекты Рибо

Известный исследователь расстройств памяти Т. Рибо, анализируя важные для понимания психологии памяти случаи амнезий – временных потерь памяти, выявил две закономерности:

Память человека связана с личностью, причем таким образом, что патологические изменения в личности почти всегда сопровождаются нарушениями памяти;

Память человека теряется и восстанавливается по одному и тому же закону: при потерях памяти в первую очередь страдают наиболее сложные и недавно полученные впечатления; при восстановлении памяти дело обстоит наоборот, т.е. сначала восстанавливаются наиболее простые и старые воспоминания, а затем наиболее сложные и недавние.

Динамика забывания

Динамика забывания не носит прямолинейный характер. Запомнив что-то, человек за первые восемь часов забывает столько же, сколько за последующие тридцать дней.

Эффект мотивированного забывания

Фрейд открыл закономерность, согласно которой человек имеет склонность к забыванию психологически неприятного. Особенно часто такое мотивированное забывание неприятных намерений и обещаний проявляется в тех случаях, когда они связаны с воспоминаниями, порождающими отрицательные эмоциональные переживания.

Связь между точностью припоминания и уверенностью в этой точности

Между точностью воспроизведения событий и уверенностью в этой точности не всегда существует однозначная связь. Человек может объективно правильно воспроизводить события, но не сознавать этого и, наоборот, ошибаться, но быть уверенным, что воспроизводит их правильно.

Человек помнит больше, чем способен припомнить

Плохая память человека может быть связана с трудностями припоминания, чем запоминания как такового. Наиболее показательные примеры удачного припоминания дает гипноз. Под его влиянием человек неожиданно может припомнить давно забытые события далекого детства, впечатления о которых, казалось бы, навсегда утрачены.

Процессы запоминания и воспроизведения информации несовместимы и противоположно направлены

Можно утверждать, что обширный поток новой информации препятствует припоминанию, в то время, как воспроизведение даже большого объема сведений значительно меньше влияет на процесс восприятия. Так, в состоянии информационного вакуума человек ощущает некоторое прояснение памяти, да и ума в целом.