Виды и конструкции, назначение и применение аккумуляторов тепла. Реферат: Аккумулирование тепла

Если у вас в доме имеется котельная установка, работающая на твердом топливе, то вам должно быть известно, что она не способна функционировать долгое время без вмешательства человека. Это обусловлено необходимостью периодически загружать дрова в топку. Если этого вовремя не сделать, то система начнет остывать, а температура в комнатах будет понижаться.

Если отключится электроэнергия при разгоревшейся топке, то возникнет опасность закипания воды в рубашке оборудования, следствием чего станет ее разрушение. Данные проблемы можно решить методом установки теплоаккумулятора. Он выполняет еще и роль защиты установок из чугуна от растрескивания, когда происходит резкий перепад температуры сетевой воды.

Использование теплоаккумулятора в быту

Аккумулятор тепловой стал для многих современных систем отопления незаменимым устройством. С помощью данного дополнения можно обеспечить накапливание избытка энергии, вырабатываемой в котле и обычно расходуемой напрасно. Если рассматривать модели теплоаккумуляторов, то большинство из них имеют вид стального бака, который обладает несколькими верхними и нижними патрубками. К последним подключается источник тепла, тогда как к первым - потребители. Внутри находится жидкость, которую можно использовать для решения разных задач.

Аккумулятор тепловой используется в быту довольно часто. В основе его работы лежит внушительная теплоемкость воды. Функционирование данного прибора можно описать следующим образом. К верхней части бака подключается трубопровод котельного оборудования. В бак поступает горячий теплоноситель, который оказывается нагретым максимально.

Циркулирующий насос находится снизу. Он вбирает холодную воду и запускает по системе отопления, направляя в котел. Остывшая жидкость в течение короткого времени сменяется нагретой. Как только котел перестает работать, теплоноситель начинает остывать в трубах и трубопроводных магистралях. Вода попадает в бак, где начинает вытеснять горячий теплоноситель в трубы. Обогрев помещения будет продолжаться еще в течение некоторого времени по такому принципу.

Роль теплоаккумулятора

Аккумулятор тепловой в быту способен выполнять множество полезных функций, среди них:

  • стабилизация температурного режима в доме;
  • обеспечение помещений горячим водоснабжением;
  • увеличение коэффициента полезного действия системы до максимально возможного;
  • снижение денежных затрат на топливо;
  • накапливание избыточной энергии от котла;
  • объединение нескольких источников тепла в один контур;
  • возможность разъединения источников тепла.

Что еще необходимо знать об особенностях использования в быту

На сегодняшний день известно несколько методик расчета объема резервуара. Как показывает опыт, на каждый киловатт мощности оборудования необходимо 25 л воды. Коэффициент полезного действия котла, который предусматривает необходимость наличия системы отопления с аккумулятором тепла, повышается до 84%. Пик горения нивелируется, за счёт этого энергоресурсы экономятся в объеме до 30%.

Аккумулятор тепловой обеспечивает сохранение температуры благодаря надежной теплоизоляции из вспененного полиуретана. Дополнительно предусмотрена возможность монтажа ТЭНов, которые позволяют при необходимости нагревать воду.

Когда нужен теплоаккумулятор

Аккумулирование тепла необходимо при большой потребности в водоснабжении. Этот случай распространяется на коттеджи, в которых проживает более 5 человек.

Аккумулирование тепла необходимо и в тех домах, где два санузла. Тепловой аккумулятор требуется и при использовании котлов на твердом топливе. Описываемые приборы сглаживают работу оборудования в часы высоких нагрузок, собирая излишки тепла и исключая закипание. С помощью подобного устройства можно увеличить время между закладками топлива.

Другие виды аккумуляторов тепла

Тепловой аккумулятор для автомобиля тоже может быть использован. Он представляет собой термос, который обеспечивает легкий запуск двигателя при низких температурах. Этот прибор накапливает и отдает тепло. Работает он автономно и почти не требует приложения дополнительной энергии. Принцип его работы заключается в том, что антифриз нагревается от работающего двигателя до 90°С, а если его поместить в тепловой аккумулятор, то он будет оставаться горячим ещё в течение двух суток.

Перед тем как запустить холодный двигатель, потребителю нужно будет включить электронасос, который закачает жидкость в двигатель. Уже через несколько минут мотор окажется прогретым, а значит, его можно будет подключить к автомобильной сигнализации.

Тепловой аккумулятор для ракет "Земля-Воздух" тоже был изобретён. Его производство было налажено, что удалось увеличить эффективность ПВО. Сегодня тепловые аккумуляторы, к сожалению, могут использоваться для создания заминированных машин, которые управляются дистанционно.

Изготовление теплоаккумулятора своими руками

Наиболее простую модель аккумулятора можно изготовить самостоятельно, при этом следует руководствоваться принципами работы термоса. За счёт стенок, которые не проводят тепло, жидкость долго будет оставаться горячей. Для работы следует подготовить:

  • скотч;
  • бетонную плиту;
  • теплоизоляционный материал;
  • медные трубки или ТЭНы.

Когда изготавливается при выборе бака необходимо учитывать желаемую емкость, она должна начинаться от 150 л. Можно подобрать любую металлическую бочку. Но если выбрать объём меньше упомянутого, то смысл теряется. Емкость подготавливается, изнутри удаляется пыль и мусор, участки, где начала образовываться коррозия, необходимо обработать соответствующим образом.

Методика проведения работ

На следующем этапе необходимо подготовить утеплитель, его нужно будет обернуть вокруг бочки. Он станет отвечать за сохранение тепла. Для самодельной конструкции отлично подходит минеральная вата. С внешней стороны ею окутывается бак, а после вся конструкция защищается скотчем. Дополнительно поверхность можно накрыть фольгированной пленкой или металлом.

Когда выполняется тепловой аккумулятор для отопления, важно обеспечить подогрев воды внутри, для этого обычно используется один из существующих способов. Это может быть установка электрических ТЭНов или змеевика, по которому будет пускаться вода. Первый вариант нельзя назвать безопасным, кроме того, он достаточно сложный в реализации, поэтому от него лучше отказаться. А вот змеевик вы можете выполнить из медной трубки, диаметр которой варьируется в пределах от 2 до 3 см.

Длина изделия может быть равна пределу от 8 до 15 мм. Из трубки собирается спираль, которую нужно поместить внутрь емкости. В данной модели аккумулятором выступит верхняя часть бочки. Снизу необходимо расположить еще один патрубок, который будет вводным. Через него станет поступать холодная вода. Патрубки следует дополнить кранами.

На этом можно считать, что простое устройство теплоаккумулятора готово к эксплуатации, но для начала необходимо решить вопрос, связанный с пожарной безопасностью. Такая установка должна располагаться на бетонной плите, ее по возможности отгораживают стенками.

Заключение

Тепловой аккумулятор для ракеты - это устройство, которое далеко от понимания обычного потребителя. А вот теплоаккумулятор для системы отопления вы вполне сможете подключить самостоятельно. Для этого транзитом через бак должен будет проходить обратный трубопровод, на концах которого предусмотрены выход и вход.

На первом этапе между собой следует соединить бак и обратку котла. Между ними располагается циркуляционный насос, он будет перегонять теплоноситель из бочки в отсекающий кран, отопительные приборы и расширительный бак. Со второй стороны устанавливается циркуляционный насос и отсекающий кран.

Тепловой аккумулятор – устройство, предназначенное для накопления тепловой энергии с целью ее использования в домах, зданиях, на промышленном производстве.

Тепловой аккумулятор или, как его иногда еще называют – буферная емкость – ни что иное, как обыкновенная бочка (круглая или квадратная). Но бочка эта не простая, а волшебная.

Она способна экономить ваши деньги и создавать комфортную температуру в доме. У самой простой модификации теплового аккумулятора два выхода вверху и два внизу. Что еще может быть проще? Про тепловой аккумулятор наслышаны многие, но когда и как его применить, сэкономив при этом на отоплении, знают далеко не все.

Когда выгодно выполнить монтаж теплового аккумулятора:

У вас стоит твердотопливный котел;

Вы отапливаетесь электричеством;

В помощь к отоплению добавлены солнечные коллекторы;

Есть возможность утилизировать тепло от агрегатов и машин.


Самый распространенный случай применения теплового аккумулятора, когда в качестве источника тепла используется твердотопливный котел. Тот, кто пользовался твердотопливным котлом для отопления своего дома знает, какого комфорта можно добиться с помощью подобной отопительной системы. Затопил – разделся, прогорел – оделся. По утрам в доме с таким источником тепла не хочется вылазить из-под одеяла. Регулировать процесс горения в твердотопливнос котле очень трудно.Топить нужно и при +10С, и при -40С. Горение и количество выделяемого тепла будет одинаковым, только вот этого самого тепла нужно совсем по-разному. Что же делать? О каком КПД может идти речь, когда при плюсовой температуре приходится открывать окна. Ни о каком комфорте и речи быть не может.

Схема монтажа твердотопливного котла с тепловым аккумулятором – идеальное решение для частного дома, когда хочется и уюта, и экономии. При подобной компановке вы растапливаете твердотопливный котел, нагреваете воду в тепловом аккумуляторе и получаете столько тепла, сколько вам нужно. При этом котел будет работать на максимальной мощности и с наибольшим КПД. Сколько тепла дадут дрова или уголь, столько и запасете.

Второй вариант. Монтаж теплового аккумулятора с электрокотлом. Данное решение сработает, если у вас имеется двухтарифный электросчетчик. Запасаем тепло по ночному тарифу, расходуем и днем, и ночью. Если вы решили применить такую систему обогрева, лучше поискать тепловой аккумулятор с возможностью установки электротена прямо в бочку. Электротен стоит дешевле электрического котла, да и материала для обвязки котла не потребуется. Минус работа по монтажу электрокотла. Представляете сколько можно сэкономить?

Третий вариант, когда имеется солнечный коллектор. Весь избыток тепла можно скидывать в тепловой аккумулятор. В демисезонье получается отличная экономия.

Расчет теплового аккумулятора

Формула расчета очень простая:

Q = mc(T2-T1), где:

Q - накопленная теплота;

m - масса воды в баке;

с - удельная теплоемкость теплоносителя в Дж/(кг*К), для воды равная 4200;

Т2 и Т1 - начальная и конечная температуры теплоносителя.

Допустим, у нас радиаторная система отопления. Радиаторы подобраны под температурный режим 70/50/20. Т.е. при опускании температуры в баке аккумулятора ниже 70С, мы начнем испытывать недостачу тепла, то есть попросту замерзать. Давайте расчитаем, когда это произойдет.

90 – это наши Т1

70 – это Т2

20 – температура в помещении. Она нам в расчете не понадобится.

Допустим, у нас тепловой аккумулятор на 1000 литров (1м3)

Считаем запас тепла.

Q =1000*4200*(90-70)=84 000 000 Дж или 84 000 кДж

1 кВт-ч = 3600 кДж

84000/3600=23,3 кВт тепла

Если теплопотери дома – 5 кВт в холодную пятидневку, то нам хватит запасенного тепла почти на 5 часов. Соответственно, если температура выше расчетной на холодную пятидневку, то теплового аккумулятора будет достаточно на более продолжительное время.

Подбор объема теплового аккумулятора зависит от ваших задач. Если необходимо сгладить температуру, ставим небольшой объем. Если требуется накопить тепло вечером, чтобы утром проснуться в теплом доме, нужен большой агрегат. Пусть стоит вторая задача. С 2300 до 0700 – должен быть запас тепла.

Предположим, что теплопотери – 6 кВт, а температурный режим системы отопления – 40/30/20. Теплоноситель в тепловом аккумуляторе может разогреться до 90С

Время запаса 8 часов. 6*8=48 кВт

M = Q /4200*(Т2-Т1)

48*3600=172800 кДж

V =172800/4200*50=0,822 м3

Тепловой аккумулятор от 800 до 1000 литров удовлетворит нашим требованиям.

Плюсы использования теплового аккумулятора в доме с утеплением

Если на вашем участке нет народного достояния – магистрального газа, впору задуматься о правильной системе отопления. Самое лучшее время, когда только готовится проект, а самое неподходящее – когда вы уже живете в доме и поняли, что отопление обходится очень дорого.

Идеальный дом для монтажа твердотопливного котла и теплового аккумулятора – это здание с хорошим утеплением и низкотемпературной системой отопления. Чем лучше утепление, тем меньше теплопотери и тем дольше ваш тепловой аккумулятор сможет поддерживать комфортное тепло.

Низкотемпературная система отопления. Выше мы привели пример с радиаторами, когда температурный режим составлял 90/70/20. При низкотемпературном режиме условия будут – 35/30/20. Почувствуйте разницу. В первом случае уже при понижении температуры ниже 90 градусов вы почувствуете недостачу тепла. В случае с низкотемпературной системой, можно спокойно спать до утра. Зачем быть голословным. Предлагаем просто посчитать выгоду.

Способ мы просчитали выше.

Вариант с низкотемпературной системой отопления

Q =1000*4200*(90-35)=231 000 000 Дж (231000 кДж)

231000/3600=64,2 кВт. Это почти в три раза больше при одинаковом объеме теплового аккумулятора. При теплопотерях – 5 кВт такого запаса хватит на всю ночь.

А теперь о финансах. Допустим, мы смонтировали тепловой аккумулятор с электрическими тенами. Запасаем по ночному тарифу. Мощность тенов – 10 кВт. 5 кВт уходит на текущий обогрев дома в ночное время, 5 кВт мы можем запасти на день. Ночной тариф с 23-00 до 07-00. 8 часов.

8*5=40 кВт. Т.е. днем мы будем пользоваться в течении 8-ми часов ночным тарифом.

С 1 го января 2015 года в Краснодарском крае дневной тариф составляет 3,85, ночной – 2,15.

Разница – 3,85-2,15=1,7 рубля

40*1,7=68 рублей. Сумма кажется маленькой, но не спешите. Выше мы давали ссылки на утепленный дом и неутепленный. Представим, что вами сделана ошибка – дом построен, вы уже прошли первый отопительный сезон и поняли, что отопление электричеством обходится очень дорого. Выше мы привели пример теплопотерь неутепленного дома. В примере теплопотери составляют 18891 ватт. Это в холодную пятидневку. Средняя за отопительный сезон будет ровно в 2 раза меньше и составит 9,5 кВт.

Следовательно, за отопительный сезон нам необходимо 24*149*9,5=33972 кВт

В рублях 16 часов, 2/3 (22648) по дневному тарифу, 1/3 (11324 кВт) по ночному.

22648*3,85=87195 руб

11324*3,85=24346 руб

Итого: 111541 руб. Цифра за тепло просто ужасающая. Такая сумма способна опустошить любой бюджет. Если же ночью запасти тепло, то можно сэкономить. 38502 рублей за отопительный сезон. Немалая экономия. Если у вас такие расходы, в пару к электрокотлу необходимо ставить твердотопливный котел или камин с водяной рубашкой. Есть время и желание – закинули дровишки, запасли тепло в тепловой аккумулятор, остальное добиваем электричеством.

В утепленном доме с тепловым аккумулятором стоимость отопительного сезона будет сопоставима с аналогичными неутепленными домами, в которых есть магистральный газ.

Наш выбор, когда нет магистрального газа, такой:

Хорошо утепленный дом;

Низкотемпературная система отопления;

Тепловой аккумулятор;

Твердотопливный котел иди водяной камин;

Электрокотел.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Жидкостные тепловые аккумуляторы. Физические основы для его создания. Аккумуляторы тепла, основанные на фазовых переходах. Особенности тепловых аккумуляторов с твёрдым теплоаккумулирующим материалом. Конструкция теплового аккумулятора фазового перехода.

    реферат , добавлен 18.01.2010

    Особенности конструкции разработанной фритюрницы для приготовления картофеля фри. Расчет полезно используемого тепла. Определение потерь тепла в окружающую среду. Конструирование и расчет электронагревателей. Расход тепла на нестационарном режиме.

    курсовая работа , добавлен 16.05.2014

    Общие сведения о солнце как источнике энергии. История открытия и использование энергии солнца. Способы получения электричества и тепла из солнечного излучения. Сущность и виды солнечных батарей. "За" и "против" использования солнечной энергии.

    реферат , добавлен 22.12.2010

    Характеристика Солнца как источника энергии. Проектирование и постройка зданий с пассивным использованием солнечного тепла, способы уменьшения энергопотребления. Виды концентрационных станций, конструкции активной гелиосистемы и вакуумного коллектора.

    реферат , добавлен 11.03.2012

    Фотоэлектрическое преобразование солнечной энергии. Элементы солнечных батарей. Регуляторы зарядки и разрядки аккумуляторов, отбора мощности батареи. Технические характеристики, устройство и принцип работы современных термоэлектрических генераторов.

    реферат , добавлен 16.02.2015

    Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа , добавлен 30.07.2012

    Расчет расхода тепла на отопление, вентиляцию, горячее водопотребление. Графики часового и годового потребления тепла по периодам и месяцам. Схема теплового узла и присоединения теплопотребителей к теплосети. Тепловой и гидравлический расчет трубопровода.

    курсовая работа , добавлен 25.01.2015

    Определение параметров цикла со смешанным подводом теплоты в характерных точках. Политропное сжатие, изохорный подвод тепла, изобарный подвод тепла, политропное расширение, изохорный отвод тепла. Количество подведённого и отведённого тепла, КПД.

    контрольная работа , добавлен 22.04.2015

Алтайский государственный технический университет

им. И. И. Ползунова

Заочный факультет

по дисциплине Нетрадиционные источники энергии.

тема: Аккумулирование тепла

Проверил: В.В. Чертищев

Барнаул 2007


Введение

Глава 1. Физические основы для создания теплового аккумулятора

Глава 2. Жидкостные тепловые аккумуляторы

Глава 3. Тепловые аккумуляторы с твёрдым теплоаккумулирующим материалом.

Глава 4. Аккумуляторы тепла, основанные на фазовых переходах.

Глава 5. Конструкция ТА фазового перехода.


Введение

Сейчас во всем мире идет повсеместная экономия сырьевых ресурсов. Ученые многих стран пытаются решить эту проблему различными методами, в том числе и с помощью применения альтернативных источников энергии. К ним можно отнести такие виды, как использование водных ресурсов малых рек, морских волн, гейзеров и даже отходов производства и бытового мусора.

Но возникает проблема сохранения полученной энергии. Например, тепловую энергию, полученную в солнечной водонагревательной установке, можно сохранить в тепловом аккумуляторе, и использовать в темное время суток.

Тепловые аккумуляторы известны человечеству с глубокой древности. Это и горячая зола, куда наши предки закапывали продукты для их тепловой обработки, и горячие камни, которые накаливали на огне. Утюг, который нагревают на огне, а затем гладят им,- тепловой аккумулятор. Накаленные камни, которые мы поливаем водой (квасом, пивом) в парилках,- тоже аккумулятор тепла. Термобигуди, которые кипятят в воде, а затем с их помощью делают прическу,- тоже тепловые аккумуляторы, причем достаточно совершенные, основанные на аккумулировании плавлением.

Итак, каждое тело, нагретое выше температуры окружающей среды, можно считать аккумулятором тепла. Это тело способно, охлаждаясь, производить работу, а, следовательно, обладает энергией.


Глава 1.Физические основы для создания теплового аккумулятора

Аккумулятором тепла называется устройство (или совокупность устройств), обеспечивающее обратимые процессы накопления, хранения и выработки тепловой энергии в соответствии с требованиями потребителя.

Процессы аккумулирования тепла происходят путем изменения физических параметров теплоаккумулирующего материала и за счет использования энергии связи атомов и молекул веществ.

Исходя из первого закона термодинамики для незамкнутой системы постоянного химического состава характеристики аккумуляторов тепла зависят от изменения массы, объема, давления, энтальпии и внутренней энергии материала, а также различных их комбинаций.

В зависимости от технической реализации используется прямее аккумулирование тепла, когда аккумулирующий материал является одновременно и теплоносителем, косвенное аккумулирование - при различных теплоаккумулирующих и теплопередающих средах, а также различные виды симбиоза названных случаев.

Изменение энтальпии теплоаккумулирующего материала (ТАМ) может происходить как с изменением его температуры, так и без такового - в процессе фазовых превращений (например, твердое - твердое, твердое - жидкое, жидкое - пар).

Тепловые аккумуляторы реализуют, как правило, несколько элементарных процессов.

На современном этапе развития науки и техники существует возможность реализации практически любого известного принципа аккумуляции тепла. Целесообразность использования каждого принципа определяется наличием положительного эффекта, в первую очередь, экономического, достижение которого возможно при минимальной стоимости аккумулятора. Она определяется при прочих равных условиях массой и объемом теплоаккумулирующего материала, необходимого для обеспечения заданных параметров процесса.

В реальном процессе аккумулирования тепла плотность запасаемой энергии оказывается существенно ниже теоретического значения вследствие потерь тепла, выравнивания поля температур, потерь при заряде и разряде. Отношение реального и теоретического значений плотности запасаемой энергии и определяет эффективность теплового аккумулятора.

Одним из важнейших показателей, определяющих возможность и целесообразность аккумулирования тепла, является способность выделять энергию в количествах, необходимых потребителю. При прямом аккумулировании тепла это достигается практически всегда. Показатели таких аккумуляторов слабо зависят от вырабатываемой мощности, которая определяется расходом ТАМ и ограничивается только конструктивными и прочностными требованиями.

При косвенном аккумулировании повышение вырабатываемой мощности увеличивает градиент температур и ТАМ, что приводит либо к увеличению поверхности теплообмена, либо к неполному использованию запаса тепла. В любом случае это снижает эффективность аккумулирования.

Глава 2. Жидкостные тепловые аккумуляторы

К числу наиболее простых и надежных устройств аккумулирования тепла, несомненно, относятся жидкостные ТА, что связано с совмещением функций теплоаккумулирующего материала теплоносителя. Вследствие этого аккумуляторы такого типа особенно широко применяются для бытовых целей, в схемах различных электростанций (АЭС, АТЭЦ, солнечные и др.). В настоящее время применяются несколько основных конструктивных исполнений жидкостных ТА. Двухкорпусной ТА характеризуется раздельным хранением горячего и холодного ТАМ. В процессе зарядки один корпус заполняется горячим ТАМ, а другой – опорожняется. При работе горячий ТАМ подается потребителю и, отработав, попадает в корпус холодного ТАМ. Основным достоинством такого исполнения ТА является изотермичность каждого из корпусов и, как следствие, отсутствие в них термических напряжений и потерь, энергии на нагрев - охлаждение. Очевидно также, что объем корпусов используется нерационально и почти вдвое превышает объем ТАМ. Такое принципиальное решение целесообразно при большой разнице температур горячего и холодного ТАМ, особенно в случаях использования солевых ТАМ и жидких металлов.

Рис. 2. Основные типы жидкостных аккумуляторов тепла (магистрали показаны в режиме разряда): а - двухконтурный; б - многокорпусный; в - вытеснительный; с - со скользящей температурой ТАМ; 1 - горячий ТАМ; 2 - холодный ТАМ; 3– потребитель; 4 - единый корпус; 5 - уровень жидкости; 6 - промежуточный теплоноситель.

С целью более рационального использования объема аккумулятора предложен многокорпусный вариант, в котором используется несколько корпусов с горячим ТАМ и один пустой (холодный). По мере разрядки заполняется сначала этот корпус, а затем освобождающиеся горячие по мере их опорожнения. Это приводит к появлению термических напряжений и потерь на нагрев во всех корпусах, кроме одного.

Наиболее рационально используется объем теплового аккумулятора в случае применения единого корпуса, заполненного в начале процесса горячим ТАМ.

В процессе работы горячий ТАМ забирается из верхней части ТА, а отработанный холодный ТАМ подается в нижнюю часть ТА. Такой тип жидкостного аккумулятора называется вытеснительным. Вследствие разности плотностей горячей и холодной жидкостей может обеспечиваться малое перемешивание жидкости (эффект «термоклина»), эффективность использования вытеснительных ТА снижается вследствие потерь тепла на перемешивание и теплопроводности между объемами горячего и холодного ТАМ, нагрев корпусов и т. п.

Тепловые аккумуляторы такого типа применяются для жидкостей, имеющих большой коэффициент линейного расширения.

При особых свойствах ТАМ или нецелесообразности для потребителя использования ТАМ в качестве теплоносителя применяются тепловые аккумуляторы со скользящей температурой (рис. 2, г ).

В этом случае промежуточный теплообменник может размещаться как в корпусе ТА, так и вне его. В процессе заряда происходит нагрев ТА с использованием либо промежуточного теплоносителя, либо электроэнергии, а в процессе остывания производится отвод тепла в промежуточном теплообменнике. Одним из характерных примеров такого ТА является «солнечный пруд», в котором отбор ТАМ нежелателен вследствие разрушения обратного градиента солености воды.

Конструктивное исполнение жидкостного теплового аккумулятора во многом определяется свойствами теплоаккумулирующего материала. В настоящее время наиболее широко применяются вода и водные растворы солей, высокотемпературные органические и кремнийорганические теплоносители, расплавы солей и металлов.

В диапазоне рабочих температур 0...100 о С вода является лучшим жидким ТАМ как по комплексу теплофизических свойств, так и по экономическим показателям. Дальнейшее повышение рабочей температуры воды связано с существенным ростом давления, что усложняет проектирование корпуса, повышает его стоимость. С целью обеспечения низких рабочих давлений ТАМ используются различные высокотемпературные теплоносители. При этом возникают проблемы подбора конструкционных материалов теплового аккумулятора и системы в целом, применения специальных устройств, предотвращающих отвердение ТАМ на всех режимах эксплуатации, герметизации ТА и ряд других.

Кроме этого, использование наиболее распространенного вытеснительного типа ТА связано с комплексом конструктивных и эксплуатационных мероприятий, обеспечивающих минимальные потери энергии.

С целью снижения потерь от смешения горячего и холодного объемов ТАМ используются различные устройства, обеспечивающие снижение скорости потока жидкости, выходящего и входящего в патрубок до нескольких сантиметров в секунду, и равномерное распределение ТАМ по всему сечению аккумулятора.

Таблица 2 Теплофизические свойства жидких ТАМ

Температура, К Плотность кг\м 3 ·10 3 Удельная теплоёмкость кДж\кг·К коэффициент
застывания максимальная кипения Теплопроводности, Вт\м·К Вязкости, ·10 6 Па·с
Вода под давлением, 0,1 МПа: 273 373 373 1 4,19 0,67 5,5
тетрахлордифенил 266 613 1,44 2,1 0,17 1000
Дифенильная смесь 285 673 531 0,95 0,12-0,08
полиметилсилоксан 213 593 0,9 1,5 0,1-0,14 5-20
полиэтилсилоксан 203 563 0,9-1 1,6 0,13-0,16 3-40
литий 455 1600 1623 0,48 4,36 52-66 8-13
натрий 371 1150 1155 0,8 1,33 52-75 14-22

В жилых помещениях можно применить водяной аккумулятор в качестве суточного. Суточный водяной аккумулятор тепла устанавливается внутри дома, в том числе он может быть встроен в одну из межкомнатных перегородок. Аккумулятор представляет собой полую стену, в которой размещены баки, заполненные водой. Через эти баки проходят дымовые трубы от печи, которые подогревают воду в баках. Источниками нагрева водяного аккумулятора кроме печи, могут быть использованы система воздушного солнечного отопления и система солнечного подогрева воды.

Внешняя теплоизоляция аккумулятора - деревянная, кирпичная или из газобетона, - служит для понижения температуры обогревающей поверхности примерно до 40 о С. Теплоизоляция обеспечивает медленное остывание бака-аккумулятора с тем, чтобы температура в комнате поддерживалась в приемлемом диапазоне температур.

Глава 3. Тепловые аккумуляторы с твёрдым теплоаккумулирующим материалом

Тепловые аккумуляторы с твердым ТАМ в настоящее время наиболее распространены. Это связано в первую очередь с использованием недорогих материалов, простых и проверенных технических решений. В качестве ТАМ используются наиболее дешевые материалы - щебень, феолит (железная руда), остатки строительных материалов.

Традиционно рассматриваются тепловые аккумуляторы с неподвижной или подвижной матрицами.

Использование неподвижной матрицы обеспечивает максимальную простоту конструкции, но требует больших масс ТАМ. Кроме этого, температура теплоносителя на выходе из аккумулятора изменяется в течение времени, что требует дополнительной системы поддержания постоянных параметров путем перепуска.

В настоящее время рассматривается несколько характерных технических решений таких аккумуляторов тепла (рис. 3).

Рис.3. Основные типы ТА с твердым ТАМ: а -с пористой матрицей; б, в - канальный; г, д - подземный с вертикальными и горизонтальными каналами; е - в водоносном горизонте; 1- вход теплоносителя; 2- теплоизоляция; 3 – разделительная решетка; 4 - ТАМ; 5 - опоры; 6- выход теплоносителя; 7 - разделении потоков; 8 -- индуктор; 9– водоносный слой; 10 – водонепроницаемый слой.

Аккумуляторы с пористой матрицей применяются, как правило, в системах гелиотеплоснабжения. Такие ТА проектируются, как правило, с минимальным гидравлическим сопротивлением, что позволяет использовать принцип свободно-конвективного переноса. При заряде горячий газ подается в верхнюю часть ТА и, охлаждаясь, опускается в его нижнюю часть.

При заряде горячий газ подается в верхнюю часть ТА и, охлаждаясь, опускается в его нижнюю часть. При разряде холодный газ подается в нижнюю часть ТА, нагревается и выходит из верхней его части. Таким образом, можно спроектировать систему теплоснабжения, требующую только источник тепловой энергии (например, Солнце). Известна разработка нагревателя газа для газодинамического лазера, использующая принцип «пористой» матрицы, нагреваемой электроэнергией.

Канальный ТА широко применяется в системах электро–теплоснабжения, использующих внепиковую энергию. Теплоаккумулирующий материал (шамот, огнеупорный кирпич и т. п.) нагревается в периоды минимального потребления электроэнергии, что позволяет выравнивать графики загрузки электростанций. Обогрев помещений производится воздухом, нагреваемым в процессе прохождения через матрицу.

Особым типом канального ТА с твердым ТАМ являются тепловые графитовые аккумуляторы, используемые в качестве источника энергии в автономных энергоустановках. Температура их нагрева может достигать 3500 К, что обеспечивает хорошие массогабаритные характеристики установки.

Подземные аккумуляторы тепла с вертикальными каналами используются, как правило, для аккумуляции сезонного тепла. Длина одного канала таких аккумуляторов может достигать ста метров, а общая энергоемкость тысяч киловатт-часов. Подземные аккумуляторы тепла с горизонтальными каналами применяются для аккумуляции тепла в течение нескольких месяцев.

Тепловые аккумуляторы с подвижной матрицей выполняются, как правило, в виде вращающегося регенератора, устройств с падающими шарами и т. п. Такие аккумуляторы применяются в устройствах регенерации тепловой энергии и вследствие малой продолжительности рабочего цикла имеют небольшие габариты; ТА с подвижной матрицей могут обеспечивать постоянную температуру газа на выходе. Основные характеристики наиболее часто применяемых твердых ТАМ приведены в табл. 3


Таблица 3 Основные свойства твердых ТАМ

ТАМ Температура о С Плотность, кг\м 3 Удельная теплоёмкость, кДж\кг коэффициент
Теплопроводности, Вт\м*К Температуропроводности 10 -6 м 2 \с
Щебень 400 2500-2800 0,92 2,2-3,5 0,85-1,5
феолит 400 3900 0,92 2,1 2,5
бетон 400 1900-2000 0,84 1,2-1,3 0,76
шамот 1700 1830-2200 1,1-1,3 0,6-1,3 0,21-0,65
графит 3500 1600-2000 2,0 40-170 12-54
Кирпич красный 1000 1700-1800 0,88 0,7-0,8 0,5
песок ––– 1460-1600 0,8-1,5 0,3-0,2 ––

С целью уменьшения амплитуды колебаний температуры холодного газа используется одновременная работа нескольких аккумуляторов, разряжаемых на общий канал. В этом случае амплитуда колебаний уменьшается пропорционально количеству работающих ТА. Очевидно, что для достижения постоянной температуры газа необходимо бесконечное их количество, что реализуется во вращающемся регенераторе.

Глава 4. Аккумуляторы тепла, основанные на фазовых переходах

Использования теплоты плавления для аккумулирования тепла обеспечивает высокую плотность запасаемой энергии при использовании небольших перепадов температур и достаточно стабильную температуру на выходе из ТА. Однако большинство ТАМ в расплавленном состоянии являются коррозионноактивными веществами, в основном имеют низкий коэффициент теплопроводности, изменяют объем при плавлении и относительно дороги. В настоящее время известен широкий спектр веществ, обеспечивающих температуру аккумуляции от 0 до 1400 °С. Следует отметить, что широкое применение ТА с плавящимся ТАМ сдерживается прежде всего соображениями экономичности создаваемых установок.

При рабочих температурах до 120°С рекомендуется применение кристаллогидридов неорганических солей, что связано в первую очередь с использованием природных веществ в качестве ТАМ. Для реального применения рассматриваются только вещества, не разлагающиеся при плавлении, либо растворяющиеся в избыточной воде, входящей в состав ТАМ. С целью обеспечения кристаллизации с малым переохлаждением жидкости необходимо применение веществ, являющихся первичными центрами кристаллизации. Для блокирования разделения фаз либо применяются загустители, либо интенсивное перемешивание в процессе теплообмена. К настоящему времени разработаны рекомендации, обеспечивающие работоспособность ТАМ на основе кристаллогидратов в течение нескольких тысяч циклов заряд - разряд. К числу недостатков кристаллогидратов следует отнести также их повышенную коррозионную активность.

Таблица 4.1Основные свойства ТАМ на основе кристаллогидридов.

Использование органических веществ практически полностью снимает вопросы коррозионного разрушения корпуса, обеспечивает высокие плотности запасаемой энергии, неплохие экономические показатели. Разработанные к настоящему времени способы поверхностной обработки органических веществ (крафт - полимеризация - модификация и т. п.) позволяют создавать конструкции без явно выраженной поверхности теплообмена. Однако в процессе работы органических веществ происходит снижение теплоты плавления вследствие разрушения длинных цепочек молекул полимеров. Применение органических материалов требует развитых поверхностей теплообмена вследствие низкого коэффициента теплопроводности ТАМ.

Таблица 4.2 Основные свойства плавящихся органических ТАМ.

При более высоких рабочих температурах применяются, как правило, соединения и сплавы легких металлов. Существенными недостатками соединений металлов принято считать низкий коэффициент теплопроводности, коррозионную активность, изменение объема при плавлении.

Глава 5. Конструкция ТА фазового перехода

Размещение ТАМ в капсулах рис. 4, а обеспечивает высокую надежность конструкции, позволяет создавать развитую поверхность теплообмена, компенсировать (при использовании гибких капсул) изменения объема в процессе фазовых переходов. Однако вследствие низкой теплопроводности ТАМ необходимо большое число капсул малого размера, что приводит к большой трудоемкости изготовления ТА, недостаточно рациональному использованию объема (для цилиндрических капсул), малой жесткости конструкции (для плоских капсул). Особенно целесообразно применение капсульных ТА в случаях малых тепловых потоков с теплообменной поверхности.

Рис.4 Основные типы тепловых аккумуляторов фазового перехода: а - капсульный; 6 -. кожухотрубный; в, г - со скребковым удалением ТАМ; д - с ультразвуковым удалением ТАМ; е, ж - с прямым контактом и прокачкой ТАМ; з, и - с испарительно-конвективным переносом тепла; 1 -жидкий ТАМ; 2 -твердый ТАМ; 3 - поверхность теплообмена; 4 - корпус ТА; а - теплоноситель; 6 - граница раздела фаз; 7 - частицы твердого ТАМ; 4- промежуточный теплообменник; 9 - паровое и жидкостное пространства для теплоносителя.

Расположение ТАМ в межтрубном пространстве кожухотрубного теплообменника (рис. 4,б) обеспечивает рациональное использование внутреннего объема ТА и применение традиционной технологии изготовления теплообменных аппаратов. Однако при такой конструкции затруднено обеспечение свободного расширения ТАМ, вследствие чего понижена надежность аккумулятора в целом. Обеспечение динамических характеристик аккумулятора затруднено известными прочностными ограничениями шага трубок в трубной доске.

Наиболее технологически сложным и дорогим элементом ТА традиционной конструкции является теплообменная поверхность, определяющая мощность теплового аккумулятора. Вследствие низких коэффициентов теплопроводности большинства плавящихся ТАМ в настоящее время предложены различные способы уменьшения поверхности теплообмена путем соскребания ТАМ, ультразвукового либо электрогидравлического разрушения затвердевшего ТАМ. Указанные способы позволяют существенно снизить величину теплообменной поверхности, но существенно увеличивают нагрузки на конструктивные элементы аккумулятора. Известно, что лучшим вариантом теплообменной поверхности является ее полное отсутствие, т. е. непосредственный контакт теплоаккумулирующего материала и теплоносителя. Очевидно, что в этом случае необходимо подбирать как теплоаккумулирующие материалы, так и теплоносители по признакам, обеспечивающим работоспособность конструкций.

Теплоаккумулирующие материалы в этом случае должны отвечать следующим требованиям: кристаллизоваться отдельными кристаллами; иметь большую разность плотностей твердой и жидкой фаз; быть химически стабильными; не образовывать эмульсий с теплоносителем.

Теплоносители подбираются по следующим признакам:

химическая стабильность в смеси с ТАМ,

большая разница плотностей по отношению к ТАМ,

малая способность к вспениванию,

ряд других требований, вытекающих из особенностей конструкции.

При использовании теплоносителя, более плотного чем твердый ТАМ, реализуется схема, изображенная на рис. 4 е. В процессе работы аккумулятор заполнен смесью теплоаккумулирующего материала и теплоносителя. В верхнюю часть ТА подается жидкий теплоноситель, который попадает на поверхность ТАМ, охлаждает (нагревает) его и отводится из нижней части аккумулятора. За счет меньшей плотности жидкой фазы ТАМ по сравнению с твердой его закристаллизовавшиеся частицы опускаются в нижнюю часть аккумулятора. В процессе работы ТА происходит постепенное заполнение всего объема закристаллизовавшимися ТАМ. При использовании теплоносителя с плотностью, меньшей плотности ТАМ, реализуется схема, изображенная на рис. 4 ж. Распыл теплоносителя происходит в нижней части аккумулятора. В процессе всплытия капель теплоносителя ТАМ нагревается либо охлаждается и одновременно интенсивно перемешивается. Основными недостатками приведенных способов контакта ТАМ и теплоносителя считаются потребности в постороннем источнике энергии для прокачки и необходимость тщательной фильтрации теплоносителя с целью препятствия уносу частиц ТАМ.

Указанные недостатки отсутствуют в конструкции, использующей принцип испарительно-конвективного переноса тепла при непосредственном контакте ТАМ и теплоносителя (рис.4, з ). В этом случае помимо названных свойств теплоносителя требуется, чтобы температура кипения при атмосферном давлении была несколько ниже температуры плавления ТАМ. Для заряда аккумулятора давление и соответственно температура кипения теплоносителя в нем устанавливаются выше температуры плавления ТАМ. В зарядном теплообменнике осуществляется подвод тепла. Теплоноситель закипает и пузырьки пара при температуре выше температуры плавления ТАМ поднимаются вверх и подогревают ТАМ. При этом происходит плавление ТАМ и конденсация теплоносителя. Расплавленный ТАМ поднимается вверх, а конденсат теплоносителя опускается вниз, По мере плавления ТАМ пузырьки теплоносителя выходят в паровое пространство ТА и в конце процесса зарядки весь теплоноситель в паровой фазе находится в паровом пространстве. На этапе отвода тепла от ТА давление в нем снижается так, что температура конденсации теплоносителя становится ниже температуры плавления ТАМ. При отводе тепла на поверхности разрядного теплообменника происходит конденсация теплоносителя, который стекает на расплавленный ТАМ. Происходит испарение капель теплоносителя и кристаллизация частиц ТАМ. Затвердевший ТАМ опускается в нижнюю часть ТА, а пар теплоносителя поднимается вверх.

По мере охлаждения ТАМ капли теплоносителя опускаются все ниже и ниже и в конце процесса разрядки весь теплоноситель оказывается в нижней части ТА.


Список использованной литературы

1. Агеев В.А. Нетрадиционные и возобновляемые источники энергии (курс лекций) © Кафедра теплоэнергетических систем, 2006

2. Гулиа Н. В. Накопители энергии. – М.,1980г.

3. Левенберг В.Д. и др. Аккумулирование тепла. 1991г.

4. Пугач Л.И. нетрадиционная энергетика, возобновляемые источники.

5. http://www.rodniki.bel.ru/dom/elgen0.htm

6. http://www.seu.ru/programs/ecodom/book/index.htm

Аккумулирование тепловой энергии (АТЭ) происходит благодаря широкому спектру технологий. В зависимости от конкретной технологии, оно дает возможность хранить и использовать избыточную тепловую энергию в течение нескольких часов, дней или даже нескольких месяцев в масштабах, характерных для использования отдельными пользователями, строительства (в том числе – крупномасштабного), использования в рамках округа, города или региона. Примеры использования – балансировка спроса на энергию между дневным и ночным временем, хранение летнего тепла для отопления зимой или зимнего холодного воздуха для кондиционирования воздуха. Среди средств хранения – емкости для хранения воды или льда, массы материнской почвы или коренная порода, связанная с теплообменниками с помощью буровых скважин, глубоколежащие водоносные горизонты, находящиеся между непроницаемыми слоями; мелкие ямы, заполненные гравием и водой и изолированные в верхней части; также средствами хранения могут быть эвтектические растворы и солевые грелки.

Другими источниками тепловой энергии для хранения могут быть тепло или холод, произведенный тепловыми насосами во внепиковые периоды производства дешевой электроэнергии, практика, известная как ограничение пика нагрузки; тепло от теплоэлектроцентралей; тепло, произведенное возобновляемыми источниками энергии, превышающими потребности электросетей, и бросовое тепло от промышленных процессов. Как сезонное, так и кратковременное хранение тепла считается важным средством для дешевого балансирования высокой доли разнообразных возобновляемых источников энергии и интеграции электроэнергетического и теплоэнергетического секторов в энергосистемах для достижения 100 % доли возобновляемой энергии.

Аккумулирование солнечной энергии

Самые активно применяемые системы солнечного отопления могут хранить энергию сроком от нескольких часов до нескольких дней. Однако, наблюдается рост числа мощностей, использующих сезонное аккумулирование тепловой энергии (САТЭ), что позволяет хранить солнечную энергию летом, чтобы использовать ее для отопления помещений в зимний период. Солнечное сообщество Дрэйк Лэнлинг из провинции Альберта в Канаде сейчас научилось использовать 97 % солнечной энергии круглый год, что является рекордом, ставшим возможным только благодаря использованию САТЭ.

Использование как скрытой, так и явной теплоты также возможно в высокотемпературных системах приема солнечной тепловой энергии. Различные эвтектические смеси металлов типа Алюминия и Кремния (AlSi12) предлагают высокую точку плавления для эффективного производства пара, в то время как глиноземные смеси на основе цемента предлагают хорошие свойства хранения тепла.

Технология расплава солей

Явная теплота расплава солей также используется для хранения солнечной энергии при высоких температурах. Расплавы солей могут применяться в качестве метода аккумулирования остаточной тепловой энергии. На данный момент это – коммерческая технология для хранения тепла, собранного гелиоконцентраторами (к примеру, с СЭС башенного типа или параболоцилиндров). Тепло позднее может быть преобразовано в перегретый пар для питания обычных паровых турбин и выработки электричества в плохую погоду или ночью. Это было продемонстрировано в 1995—1999 годах в рамках проекта «Solar Two». Оценки 2006 года предсказывали годовую эффективность в 99 %, ссылаясь на сравнение энергии, сохраненной в виде тепла перед преобразованием в электричество и преобразования тепла в электричество напрямую. Используются различные эвтектические смеси солей (к примеру, нитрат натрия, нитрат калия и нитрат кальция). Использование таких систем в качестве среды переноса тепла заметно в химической и металлургической промышленности.

Соль плавится при 131C (268F). Она хранится в жидком состоянии при 288C (550F) в изолированных «холодных» емкостях для хранения. Жидкая соль перекачивается через панели солнечного коллектора, где сфокусированное солнечное тепло нагревает ее до 566C (1 051F). Затем оно отправляется в горячую емкость для хранения. Сама изоляция емкости может использоваться для хранения тепловой энергии в течение недели. В случае потребности в электричестве, горячий расплав солей перекачивается в обычный парогенератор для производства перегретого пара и запуска стандартной турбогенераторной установки, используемой на любой угольной, нефтяной или атомной электростанции. Турбина мощностью в 100 МВт потребует емкость высотой в 9,1 м (30 футов) и диаметром 24 м (79 футов) для ее запуска в течение четырех часов по подобному принципу.

В разработке находится единый бак с разделительной плитой для сохранения и холодного, и горячего расплава солей. Гораздо более экономичным будет достижение на 100 % большего количества хранения энергии на единицу объема в сравнении со сдвоенными емкостями, так как емкость для хранения расплава солей достаточно дорога из-за сложной конструкции. Солевые грелки также используются для хранения энергии в расплавах солей.

Несколько параболоцилиндрических электростанций в Испании и «Solar Reserve» — разработчик солнечных электростанций башенного типа использует этот концепт для хранения тепловой энергии. Электростанция Солана в США может хранить в расплавах солей энергию, которая вырабатывается 6 часов. Летом 2013 года на электростанции «Gemasolar Thermosolar», работающей и как гелиоконцентратор, и как электростанция на расплавах солей в Испании, впервые удалось непрерывного производства электричества в течение 36 дней.

Накопление тепла в емкостях и пещерах в скалах

Паровой аккумулятор состоит из изолированного стального резервуара высокого давления, содержащего горячую воду и пар под давлением. В качестве метода для хранения тепла он используется для того, чтобы уравновешивать производства тепла изменчивыми или стабильными источниками при изменяющемся спросе на тепло. Паровые аккумуляторы могут стать действительно необходимыми для накопления энергии в проектах, связанных с тепловой солнечной энергией.

Крупные накопители широко применяются в Скандинавии для хранения тепла в течение нескольких дней, разделения производства тепла и энергия и помощи в удовлетворении пикового спроса. Исследовалось (и оказалось экономически выгодным) межсезонное аккумулирование тепла в пещерах.

Накопление тепла в горячей породе, бетоне, гальке и т.д.

Вода обладает одной из самых высоких теплоемкостей – 4,2 Дж/см3*К, тогда как бетон обладает лишь одной третью от этого значения. С другой стороны, бетон может нагреваться до гораздо более высоких температур – 1200C за счет, например, электронагрева и, таким образом, обладает гораздо большей общей емкостью. Следуя из примера далее, изолированный куб примерно 2,8 м в поперечнике может оказаться способным обеспечивать достаточный объем хранимого тепла для одного дома, чтобы удовлетворить 50 % потребности в отоплении. В принципе, это может быть использовано для хранения избыточной ветряной или фотоэлектрической тепловой энергии благодаря способности электронагрева к достижению высоких температур. На уровне округов международное внимание привлек проект «Виггенхаузен-Зюд» в немецком городе Фридрисхафене. Это – железобетонный теплоаккумулятор объемом в 12 000 м3 (420 000 куб.фт.), соединенный с комплексом солнечных коллекторов площадью 4 300 м2 (46 000 квадр. фт), наполовину обеспечивающих потребность в горячей воде и отоплении у 570 домов. Компания «Siemens» строит под Гамбургом хранилище тепла емкостью 36 МВТ*ч, состоящее из базальта, разогретого до 600C, и выработкой энергии в 1,5 МВт. Схожая система планируется для постройки в датском городе Сорё, где 41-58 % накопленного тепла емкостью в 18 МВт*ч будет передаваться для центрального теплоснабжения города, а 30-41 % — как электричество.

Технология сплава на границе растворимости

Сплавы на границе растворимости основаны на изменении фазы металла с целью хранения тепловой энергии.

Вместо того, чтобы перекачивать жидкий металл между емкостями, как в системе с расплавом солей, металл заключается в капсулу из другого металла, с которым не может сплавиться (не поддающийся смешению). В зависимости от выбора двух материалов (материал, меняющий фазу и материал капсулы), плотность хранения энергия может оставлять 0,2-2 МДж/л.

Рабочая среда, как правило – вода или пар, используется для передачи тепла к и от сплава на границе растворимости. Теплопроводность таких сплавов зачастую выше (до 400 Вт/м*К), чем у конкурирующих технологий, что означает более быструю возможную «загрузки» и «разгрузки» теплового хранилища. Технология еще не реализована для использования в промышленных масштабах.

Электротермические накопители

Электроаккумуляционные печи – обычное дело для европейских домов с регистрацией электропотребления с учетом времени суток (чаще всего использующие более дешевое электричество ночью). Они состоят из керамических кирпичей высокой плотности или феолитовых блоков, нагретых электричеством до высоких температур, которые могут иметь или не иметь хорошую изоляцию и контролируют высвобождение тепла через определенное число часов.

Технологии с использованием льда

Разрабатывается ряд технологий, где лед производится во внепиковые периоды и позднее используется для охлаждения. К примеру, кондиционирование воздуха может быть экономичнее за счет использования дешевого электричества ночью для заморозки воды и последующего использования холодильной мощности льда днем для уменьшения количества энергии, требуемой для поддержания кондиционирования воздуха. Аккумулирование тепловой энергии с применением льда использует высокую теплоту плавления воды. Исторически лед перевозили с гор в города, чтобы использовать его, как охладитель. Одна метрическая (= 1 м3) тонна воды может хранить 334 миллиона джоулей (Дж) или 317 000 Британских термических единиц (93 кВт*ч). Относительно небольшой накопитель может хранить достаточно льда, чтобы охлаждать крупное здание целый день или неделю.

Помимо применения льда для прямого охлаждения, он также используется в тепловых насосах, на которых работают системы отопления. В этих сферах изменения энергии фазы обеспечивают очень серьезный теплопроводный слой, близкий к нижнему порогу температур, при котором может работать тепловой насос, использующий теплоту воды. Это позволяет системе переносить серьезнейшие отопительные нагрузки и увеличивать промежуток времени, в течение которого элементы источников энергии могут возвращать тепло в систему.

Сверхпроводящий накопитель энергии

В этом процессе используется разжижение воздуха или азота, как способ хранения энергии.

Первая система накопления энергии при сверхнизких температурах, использующая жидкий воздух в качестве накопителя энергии, а низкопробное бросовое тепло – для запуска повторного теплового расширения воздуха, работает на электростанции в городе Слау (Великобритания) с 2010 года.

Технологии на основе горячего кремния

Твердый или расплавленный силикон предлагает гораздо более высокие температуры хранения, чем соли, а значит – и большие емкость и КПД. Он был исследован, как, возможно, гораздо более эффективная технология хранения энергии. Кремний способен хранить более 1 МВт*ч энергии на м3 при температуре в 1400C.

Накопление электричества после накачки теплом

В случае накопления электричества после накачки теплом (НЭПНТ) двухсторонняя теплонасосная система используется для сохранения энергии за счет разницы температур между двумя накопителями тепла.

Система от «Isentropic»

Система, которая была разработана ныне обанкротившейся британской фирмой «Isentropic», работала так, как указано ниже. Она включала в себя два изолированных контейнера, заполненных измельченной породой или гравием; нагретый сосуд, хранящий тепловую энергию при высокой температуре и давлении, и холодный сосуд, хранящий тепловую энергию при низкой температуре и давлении. Сосуды соединены трубами вверху и внизу, а вся система заполнена инертным газом аргоном.

Во время цикла зарядки система использует внепиковое электричество для работы в качестве теплового насоса. Аргон из верхней части холодного сосуда при температуре и давлении, сравнимыми с атмосферными, адиабатически сжимается до давления в 12 бар, нагреваясь до примерно 500C (900F). Сжатый газ перегоняется в верхнюю часть нагретого сосуда, где он просачивается сквозь гравий, передавая свое тепло породе и охлаждаясь до температуры окружающей среды. Охлажденный, но все еще находящийся под давлением, газ оседает на дне сосуда, где снова расширяется (опять же адиабатически) до 1 бара и температуры в -150C. Затем холодный газ проходит через холодный сосуд, где охлаждает породу, нагреваясь до своего изначального состояния.

Энергия снова превращается в электричество при обратном проведении цикла. Горячий газ из нагретого сосуда расширяется, чтобы запустить генератор, и затем отправляется в холодное хранилище. Охлажденный газ, поднявшийся со дна холодного сосуда, сжимается, нагревая газ до температуры окружающей среды. Затем газ направляется ко дну нагретого сосуда, чтобы снова подвергнуться нагреванию.

Процессы сжатия и расширения обеспечиваются специально разработанным поршневым компрессором, использующим скользящие клапаны. Дополнительное тепло, вырабатываемое в ходе недостатков процесса, уходит в окружающую среду через теплообменники во время цикла разрядки.

Разработчик заявляет, что КПД цикла в 72-80 % вполне реален. Это позволяет сравнивать его с накоплением энергии от ГАЭС, КПД которого составляет свыше 80 %.

Другая предлагаемая система использует турбины и способна работать с гораздо большими объемами энергии. Использование солевых грелок в качестве накопителя энергии позволит продвинуть исследования вперед.

Эндотермические и экзотермические химические реакции

Технология на основе гидратов солей

Примером экспериментальной технологии накопления энергии на основе энергии химических реакций является технология на основе гидратов солей. Система использует энергию реакции, создаваемой в случае гидратации или дегидратации солей. Это работает благодаря хранению тепла в резервуаре, содержащем 50 %-ный раствор гидроксида натрия. Тепло (к примеру, получаемое с солнечного коллектора) хранится за счет испарения воды в ходе эндотермической реакции. Когда воду добавляют вновь, в ходе экзотермической реакции при 50C (120F) высвобождается тепло. На данный момент системы работают с КПД в 60 %. Система особенно эффективна для сезонного накопления тепловой энергии, так как высушенная соль может храниться при комнатной температуре длительное время без потерь энергии. Контейнеры с обезвоженной солью даже могут перевозиться в различные места. Система обладает большей плотностью энергии, чем тепло, накопленное в воде, а ее мощность позволяет хранить энергию в течение нескольких месяцев или даже лет.

В 2013 году голландский разработчик технологий «TNO» представил результаты проекта «MERITS» по хранению тепла в контейнере с солью. Тепло, которое может доставляться с солнечного коллектора на плоскую крышу, выпаривает воду, содержащуюся в соли. Когда воду добавляют снова, тепло высвобождается практически без потерь энергии. Контейнер с несколькими кубометрами соли может хранить достаточно термохимической энергии, чтобы обогревать дом всю зиму. При температурном режиме, как в Нидерландах, среднее теплоустойчивое хозяйство потребует за зиму примерно 6,7 ГДж энергии. Чтобы сохранить столько энергии в воде (при разнице температур в 70C), потребовалось бы 23 м3 воды в изолированном резервуаре, что превышает возможности хранения большинства домов. С использованием технологии на основе гидрата солей с плотностью энергии около 1 ГДж/м3, достаточно было бы 4-8 м3.

По состоянию на 2016 год, исследователи из нескольких стран проводят эксперименты по определению наилучшего типа соли или смеси солей. Низкое давление внутри контейнера кажется наилучшим для передачи энергии. Особенно перспективными являются органические соли, так называемые «ионные жидкости». По сравнению с сорбентами на основе галида лития они вызывают гораздо меньше проблем в условиях ограниченных природных ресурсов, а в сравнении с большинством галидов и гидроксидом натрия – менее едки и не дают негативного воздействия через выбросы углекислого газа.

(2 оценок, среднее: 5,00 из 5)