Кинетическая и потенциальная энергия примеры из жизни. Примеры кинетической и потенциальной энергии

Для приведения любого тела в движение обязательным условием является произведение работы . При этом, для выполнения данной работы необходимо израсходовать некоторую энергию.

Энергия характеризует тело с точки зрения возможности производить работу. Единицей измерения энергии является Джоуль , сокращенно [Дж].

Полная энергия любой механической системы эквивалентна суммарному значению потенциальной и кинетической энергии. Поэтому, принято выделять потенциальную и кинетическую энергию в качестве разновидностей механической энергии.

Если речь ведется о биомеханических системах, то полная энергия таких систем состоит дополнительно из тепловой и энергии обменных процессов.

В изолированных системах тел, когда на них действуют лишь сила тяжести и упругости, величина полной энергии неизменна. Это утверждение является законом сохранения энергии.

Что же из себя представляет и тот, и другой вид механической энергии?

О потенциальной энергии

Потенциальная энергия это энергия, определяемая взаимным положением тел, либо составляющих этих тел, взаимодействующих друг с другом. Иными словами, эта энергия определяется величиной расстояния между телами .

К примеру, когда тело падает вниз и приводит в движение окружающие тела на пути падения, сила тяжести производит положительную работу. И, наоборот, в случае поднятия тела вверх, можно говорить о производстве отрицательной работы.

Следовательно, каждое тело при нахождении на определенном расстоянии от земной поверхности обладает потенциальной энергией. Чем больше высота и масса тела, тем больше значение работы, совершаемой телом. В то же время, в первом примере, при падении тела вниз, потенциальная энергия будет отрицательной, а при поднятии потенциальная энергия положительна.

Это объясняется равенством работы силы тяжести по значению, но противоположностью по знаку изменению потенциальной энергии.

Также примером возникновения энергии взаимодействия может служить предмет, подверженный упругой деформации — сжатая пружинка : при распрямлении ей будет производиться работа силы упругости. Здесь речь идет о совершении работы вследствие изменения расположения составляющих тела относительно друг друга при упругой деформации.

Подытожив информацию, отметим, что абсолютно каждый предмет, на который воздействует сила тяжести или сила упругости, будет обладать энергией разницы потенциалов.

О кинетической энергии

Кинетической является энергия, которой начинают обладать тела вследствие совершения процесса движения . Исходя из этого, кинетическая энергия тел, находящихся в покое, равняется нулю.

Величина данной энергии эквивалентна величине работы, которую нужно совершить для выведения тела из состояния покоя и заставить его, тем самым, двигаться. Иными словами, кинетическую энергию можно выразить как разницу между полной энергией и энергией покоя.

Работа поступательного движения, которую производит движущееся тело, напрямую зависит от массы и скорости в квадрате. Работа вращательного движения зависит от момента инерции и квадрата угловой скорости.

Полная энергия движущихся тел включает в себя оба вида производимой работы, ее определяют, согласно следующему выражению: . Основные характеристики кинетической энергии:

  • Аддитивность – определяет кинетическую энергию как энергию системы, состоящую из совокупности материальных точек, и равную суммарной кинетической энергии каждой точки этой системы;
  • Инвариантность относительно поворота системы отсчета — кинетическая энергия независима от положения и направления скорости точки;
  • Сохранение – характеристика указывает, что кинетическая энергия систем неизменна при любых взаимодействиях, в случаях изменения только механической характеристики.

Примеры тел, обладающих потенциальной и кинетической энергией

Все предметы, поднятые и находящиеся на некотором расстоянии от земной поверхности в неподвижном состоянии, способны обладать потенциальной энергией. Как пример, это бетонная плита, поднятая краном , которая находится в неподвижном состоянии, взведенная пружина.

Кинетическую энергию имеют движущиеся транспортные средства, а также, в целом, любой катящийся предмет.

При этом, в природе, бытовых вопросах и в технике потенциальная энергия способна переходить в кинетическую, а кинетическая, в свою очередь, наоборот, в потенциальную энергию.

Мяч , который бросают с некоторой точки на высоте: в самом верхнем положении потенциальная энергия мячика максимальна, а значение кинетической энергии равно нулю, поскольку мяч не движется и пребывает в состоянии покоя. При снижении высоты потенциальная энергия соответственно постепенно уменьшается. Когда мячик достигнет земной поверхности, то он покатится; в данный момент кинетическая энергия увеличивается, а потенциальная будет равна нулю.

Кинетическая энергия механической системы - это энергия механического движения этой системы.

Сила F , действуя на покоящееся тело и вызывая его движение, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона F =mdv /dt

и умножая обе части равенства на перемещение dr , получим

F dr =m(dv /dt)dr=dA

Таким образом, тело массой т, движущееся со скоростью v, обладает кинетической энергией

Т = т v 2 /2. (12.1)

Из формулы (12.1) видно, что кинетическая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее движения.

При выводе формулы (12.1) предполагалось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать законы Ньютона. В разных инерциальных системах отсчета, движущихся друг относительно друга, скорость тела, а следовательно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетическая энергия зависит от выбора системы отсчета.

Потенциальная энергия - механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является сила трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элементарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

Работа dА выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

F dr =-dП. (12.3)

Следовательно, если известна функция П(r ), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С - постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной постоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциальную энергию тела в каком-то определенном положении считают равной нулю (выбирают нулевой уровень отсчета), а энергию тела в других положениях отсчитывают относительно нулевого уровня. Для консервативных сил

или в векторном виде

F =-gradП, (12.4) где

(i, j, k - единичные векторы координатных осей). Вектор, определяемый выражением (12.5), называется градиентом скаляра П.

Для него наряду с обозначением grad П применяется также обозначение П.  («набла») означает символический вектор, называемый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h"), П= - mgh".

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна деформации:

F х упр = -kx,

где F x упр - проекция силы упругости на ось х; k - коэффициент упругости (для пружины - жесткость), а знак минус указывает, что F x упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, деформирующая сила равна по модулю силе упругости и противоположно ей направлена, т. е.

F x =-F x упр =kx Элементарная работа dA, совершаемая силой F x при бесконечно малой деформации dx, равна

dA = F x dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П=kx 2 /2.

Потенциальная энергия системы, подобно кинетической энергии, является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.

Полная механическая энергия системы - энергия механического движения и взаимодействия:

т. е. равна сумме кинетической и потенциальной энергий.

На вопрос скажите примеры кинетической и потенциальной энергии заданный автором Носогрейка лучший ответ это Потенциальная энергия - это энергия, которой обладает тело, поднятое на какую-то высоту над землей.
А кинетической энергией тело обладает при наличии какой-либо скорости, т. е. при движении!
Пример: Мяч бросают с какой-то высоты на землю. В верхней точки он обладает потенциальной энергией, кинетическая равна нулю. С уменьшением высота эта энергия тоже уменьшается. Когда мяч упадет на землю, он покатится. Его потенциальная энергия станет равной нулю, а кинетическая примет какое-то значение.

Ответ от Европейский [гуру]
висит яблоко на дереве. На высоте 2 метра над землёй. У него есть потенциальная энергия = mgh.
Когда это яблоко падает вниз, то это уже кинетическая энергия. = mV^2 / 2


Ответ от Aziza Aitkazina [новичек]
Потенциальная энергия U(\vec r) - скалярная физическая величина, представляющая собой часть полной механической энергии системы, находящейся в поле консервативных сил. Зависит от положения материальных точек, составляющих систему, и характеризует работу, совершаемую полем при их перемещении . Другое определение: потенциальная энергия - это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы .
Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.
Единицей измерения энергии в Международной системе единиц (СИ) является джоуль, а в системе СГС - эрг.


Ответ от Мудрость [новичек]
ВАС ПОПРОСИЛИ ПРЕВЕСТИ ПРИМЕРЫ!!


Ответ от Виктория Прокуда [новичек]
Люди, вас правда примеры привести просили, а не что такое Кинетическая и потенциальная энергия! Вы хотя бы вопрос читайте! Кинетическая: 1)Катающийся шарик, 2) Закрывающееся окно, 3)Бегущий человек
Потенциальная: 1) Поднятый на землей мячик, 2) Окно закрывающ. с силой, 3) Сидящий на суле человек, 4)Река закрытая дамбой.


Ответ от Борис Грабаренко [гуру]
Например: когда человек сидит на стуле, он обладает потенциальной энергией, т. е. возможностью что-то совершить. А бегущий человек обладает кинетической, энергией движущегося тела.


Ответ от ** [мастер]
пример кинетической энергии: движущийся автомобиль
потенциальной - поднятая краном бетонная плита в недвижимом положении.


Ответ от Eldar Nezametdinov [гуру]
Кинетическая энергия - энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ - Джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия - часть полной энергии, обусловленная движением.
Потенциальная энергия - работа, которую необходимо совершить, чтобы перенести тело из некой точки отсчёта в данную точку в поле консервативных сил. Единицей измерения энергии в СИ является Джоуль Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.
Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.
Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.
Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.
Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.

Мышцы, приводящие в движение звенья тела, совершают механическую работу.

Работа в некотором направлении – это произведение силы (F), действующей в направлении перемещения тела на пройденный им путь (S): А = F S.

Выполнение работы требует энергии. Следовательно, при выполнении работы энергия в системе уменьшается. Поскольку для того чтобы была совершена работа, необходим запас энергии, последнюю можно определить следующим образом: Энергия это возможность совершить работу, это некоторая мера имеющегося в механической системе « ресурса» для её выполнения . Кроме того, энергия – это мера перехода одного вида движения в другой.

В биомеханике рассматривают следующие основные виды энергии :

Потенциальная, зависящая от взаимного расположения элементов механической системы тела человека;

Кинетическая поступательного движения;

Кинетическая вращательного движения;

Потенциальная деформации элементов системы;

Тепловая;

Обменных процессов.

Полная энергия биомеханической системы равна сумме всех перечисленных видов энергии.

Поднимая тело, сжимая пружину, можно накопить энергию в форме потенциальной для последующего её использования. Потенциальная энергия всегда связана с той или иной силой, действующей со стороны одного тела на другое. Например, Земля силой тяжести действует на падающий предмет, сжатая пружина – на шарик, натянутая тетива – на стрелу.

Потенциальная энергия это энергия, которой обладает тело благодаря своему положению по отношению к другим телам, или благодаря взаимному расположению частей одного тела .

Стало быть сила тяготения и упругая сила являются потенциальными.

Гравитационная потенциальная энергия: Еп = m g h

Где k – жёсткость пружины; х – её деформация.

Из приведённых примеров видно, что энергию можно накопить в форме потенциальной энергии (поднять тело, сжать пружину) для последующего использования.

В биомеханике рассматривают и учитывают два вида потенциальной энергии: обусловленную взаимным расположением звеньев тела к поверхности Земли (гравитационная потенциальная энергия); связанную с упругой деформацией элементов биомеханической системы (кости, мышцы, связки) или каких-либо внешних объектов (спортивных снарядов, инвентаря).

Кинетическая энергия запасается в теле при движении. Движущееся тело совершает работу за счёт её убыли. Поскольку звенья тела и тело человека совершают поступательное и вращательное движения, суммарная кинетическая энергия (Ек) будет равна: , где m – масса, V – линейная скорость, J – момент инерции системы, ω – угловая скорость.

Энергия поступает в биомеханическую систему за счёт протекания в мышцах метаболических обменных процессов. Изменение энергии, в результате которого совершается работа, не является высокоэффективным процессом в биомеханической системе, то есть не вся энергия переходит в полезную работу. Часть энергии теряется необратимо, переходя в тепло: только 25 % используется для выполнения работы, остальные 75 % преобразуются и рассеиваются в организме.

Для биомеханической системы применяют закон сохранения энергии механического движения в форме:

Епол = Ек + Епот + U,

где Епол – полная механическая энергия системы; Ек – кинетическая энергия системы; Епот – потенциальная энергия системы; U – внутренняя энергия системы, представляющая в основном тепловую энергию.

Полная энергия механического движения биомеханической системы имеет в своей основе два следующих источника энергии: метаболические реакции в организме человека и механическая энергия внешней среды (деформирующихся элементов спортивных снарядов, инвентаря, опорных поверхностей; противников при контактных взаимодействиях). Передаётся эта энергия посредством внешних сил.

Особенностью энергопродукции в биомеханической системе является то, что одна часть энергии при движении расходуется на совершение необходимого двигательного действия, другая идёт на необратимое рассеивание запасённой энергии, третья сохраняется и используется при последующем движении. При расчёте затрачиваемой при движениях энергии и совершаемой при этом механической работы тело человека представляют в виде модели многозвеньевой биомеханической системы, аналогичной анатомическому строению. Движения отдельного звена и движения тела в целом рассматривают в виде двух более простых видов движения: поступательного и вращательного.

Полную механическую энергию некоторого i-го звена (Епол) можно подсчитать как сумму потенциальной (Епот) и кинетической энергии (Ек). В свою очередь Ек можно представить как сумму кинетической энергии центра масс звена (Ек.ц.м.), в которой сосредоточена вся масса звена, и кинетической энергии вращения звена относительно центра масс (Ек. Вр.).

Если известна кинематика движения звена, это общее выражение для полной энергии звена будет иметь вид: , где mi – масса i-го звена; ĝ – ускорение свободного падения; hi – высота центра масс над некоторым нулевым уровнем (например, над поверхностью Земли в данном месте); - скорость поступательного движения центра масс; Ji – момент инерции i- го звена относительно мгновенной оси вращения, проходящей через центр масс; ω – мгновенная угловая скорость вращения относительно мгновенной оси.

Работа по изменению полной механической энергии звена (Аi) за время работы от момента t1 до момента t2 равна разности значений энергии в конечный (Еп(t2)) и начальный (Еп(t1)) моменты движения:

Естественно, в данном случае работа затрачивается на изменение потенциальной и кинетической энергии звена.

Если величина работы Аi > 0, то есть энергия увеличилась, то говорят, что над звеном совершена положительная работа. Если же Аi < 0, то есть энергия звена уменьшилась, - отрицательная работа.

Режим работы по изменению энергии данного звена называется преодолевающим, если мышцы совершают положительную работу над звеном; уступающим, если мышцы совершают отрицательную работу над звеном.

Положительная работа совершается, когда мышца сокращается против внешней нагрузки, идёт на разгон звеньев тела, тела в целом, спортивных снарядов и т. д. Отрицательная работа совершается, если мышцы противодействуют растяжению за счёт действия внешних сил. Это происходит при опускании груза, спуска по лестнице, противодействии силе, превышающей силу мышц (например в армрестлинге).

Замечены интересные факты соотношения положительной и отрицательной работ мышц: отрицательная работа мышц экономичней положительной; предварительное выполнение отрицательной работы повышает величину и экономичность следующей за ней положительной работы.

Чем больше скорость передвижения тела человека (во время легкоатлетического бега, бега на коньках, бега на лыжах и т. п.), тем большая часть работ затрачивается не на полезный результат - перемещение тела в пространстве, а на перемещение звеньев относительно ОЦМ. Поэтому при скоростных режимах основная работа тратится на разгон и торможение звеньев тела, так как с ростом скорости резко растут ускорения движения звеньев тела.

Потенциальной энергией называется энергия, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела.

Потенциальной энергией, например, обладает тело, поднятое над Землей, потому что энергия тела зависит от взаимного положения его и Земли и их взаимного притяжения. Потенциальная энергия тела, лежащего на Земле, равна нулю. А потенциальная энергия этого тела, поднятого на некоторую высоту, определится работой, которую совершит сила тяжести при падении тела на Землю. Огромной потенциальной энергией обладает речная вода, удерживаемая плотиной. Падая вниз, она совершает работу, приводя в движение мощные турбины электростанций.

Потенциальную энергию тела обозначают символом E п.

Так как E п = A, то

E п = Fh

E п = gmh

E п – потенциальная энергия; g – ускорение свободного падения, равное 9,8 Н/кг; m – масса тела, h – высота, на которую поднято тело.

Кинетической энергией называется энергия, которой обладает тело вследствие своего движения.

Кинетическая энергия тела зависит от его скорости и массы. Например, чем больше скорость падения воды в реке и чем больше масса этой воды, тем сильнее будут вращаться турбины электростанций.

mv 2
E k = --
2

E k – кинетическая энергия; m – масса тела; v – скорость движения тела.

В природе, технике, быту один вид механической энергии обычно превращается в другой: потенциальная в кинетическую и кинетическая в потенциальную.

Например, при падении воды с плотины ее потенциальная энергия превращается в кинетическую. В качающемся маятнике периодически эти виды энергии переходят друг в друга.