Химический потенциал. Свободная энергия Гиббса и Гельмгольца

ТЕРМОДИНАМИЧЕСКИЕ АСПЕКТЫ ПОВЕРХНОСТИ

Химическая термодинамика, являясь разделом физической химии, изучает законы взаимных превращений различных видов энергии, влияние различных факторов на состояние равновесия химических реакций и процессов, фазовые переходы, направление и условия протекания самопроизвольных и вынужденных процессов. Термодинамический подход применим только к термодинамическим системам, состоящим из очень большого числа частиц.

Химическая термодинамика базируется на четырех законах (постулатах) и использует понятия о типах термодинамических систем (гомогенная, гетерогенная, закрытая, открытая, изолированная), термодинамических параметрах состояния (давление, температура, химический потенциал), термодинамических функциях (внутренняя энергия, энтальпия, энтропия, энергия Гельмгольца, энергия Гиббса) и термодинамических потенциалах.

Термодинамическая система – это любое тело или совокупность тел способных обмениваться между собой и с другими телами энергией и веществом, т.е. взаимодействовать между собой. Термодинамические системы по характеру взаимодействия с окружением делят на открытые, закрытые и изолированные. В открытых системах имеет место обмен с окружающей средой массой и энергией. У закрытых систем наблюдается обмен с окружающей средой лишь энергией. Для изолированных систем исключен обмен с окружающей средой как массой, так и энергией. Системы делят также на гомогенные и гетерогенные. Совокупность термодинамических параметров характеризует состояние (свойство) термодинамической системы, которое не зависит от способа достижения данного состояния. Например, температура, давление и объем являются параметрами, характеризующими состояние (свойства) газа. Термодинамические параметры являются функциями состояния системы, поскольку их изменение в любом процессе перехода между двумя состояниями определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода. Функция называется характеристической, если с помощью этой функции или её частных производных можно определить все термодинамические свойства системы в данном состоянии. Так внутренняя энергия является характеристической функцией системы при постоянстве таких параметров как энтропия и объем, энтальпия – при постоянстве давления и энтропии, энергия Гельмгольца – при постоянстве объема и температуры, а энергия Гиббса – при постоянстве давления и температуры. Указанные постоянные параметры состояния называют естественными переменными.

Под термодинамическим процессом понимают всякое изменение состояния термодинамической системы, сопровождающееся изменением хотя бы одного из параметров состояния. Процессы классифицируют, используя разные признаки. В зависимости от того, какой параметр остается постоянным, различают изотермический (температура), изобарный (давление) и изохорный (объем) процессы. Если тепло выделяется, то это экзотермический, а поглощается – эндотермический процессы. Процесс может быть самопроизвольным и вынужденным, т.е. происходить при поступлении энергии от внешних тел.


Фазой в термодинамике называют однородную по химическому составу и физическому состоянию систему или часть системы, ограниченную поверхностью раздела. Фазы могут быть гомогенными или гетерогенными. Гомогенные системы состоят из одной фазы, в отличие от гетерогенных, в состав которых входят, по крайней мере, две фазы, разграниченные поверхностями раздела.

Термодинамические параметры, не зависящие от массы вещества, являются интенсивными. Примером интенсивных параметров являются температура, вязкость, химический потенциал и т.д. Параметры, зависящие от количества вещества в системе, называются экстенсивными. Примерами экстенсивных параметров являются внутренняя работа, объем, масса, концентрация. Экстенсивный параметр, отнесенный к объему вещества, становится интенсивным.

Важным интенсивным термодинамическим параметром веществ, входящих в состав многокомпонентных систем, является химический потенциал μ, характеризующий состояние химического или фазового равновесия в макроскопической системе.

Если рассмотреть гетерогенную систему, которая состоит из n различных веществ с массами m 1 , m 2 ,……m n , то изменение внутренней энергии dU некоторой гомогенной части должно быть пропорционально изменениям масс вещества dm 1 , dm 2 ,…dm n

где S - энтропия, V – объем системы, а p – давление в системе.

Коэффициенты в уравнении при dm представляют собой химические потенциалы μ отдельных i -тых компонентов системы. Согласно определению, химический потенциал i-го вещества равен изменению энергии Гиббса при добавлении 1 моль этого вещества в условиях постоянного давления и температуры к настолько большому количеству смеси, чтобы состав её при этом не изменился.

Уравнение 1 можно записать в более общем виде

где N k – число молей в системе.

Согласно первому закону термодинамики, выражающему закон сохранения энергии для термодинамической системы, внутренняя энергия представляет собой сумму энергий всех видов движения (кинетическая энергия) и энергии взаимодействия (потенциальная энергия) всех частиц, составляющих систему, за исключением указанных энергий, относящихся ко всей системе в целом. В макроскопических системах изменение ΔU происходит в виде теплоты Q и работы A, что в интегральной форме для конечных изменений выражается уравнением:

(3)

Если понимать работу как величину, включающую изменение объема при постоянном давлении и работу по выполнению химического процесса (A ch), то первое начало термодинамики можно записать в виде:

Второй закон термодинамики определяет направление, в котором в данных условиях может самопроизвольно совершаться процесс в системе, и лежит в основе учения о химических и фазовых равновесиях. Для обратимого процесса

A ch характеризует часть внутренней энергии, которую можно превратить в работу при постоянном давлении и температуре. Эта величина называется свободной энергией Гиббса G или изобарно-изотермическим потенциалом.

В общем случае:

где H – энтальпия (скрытая теплота).

Знак энергии Гиббса определяет самопроизвольность прохождения химической реакции, которая зависит от dH и dS.

Для процессов в тепловом равновесии с окружающей средой справедлива формула:

. (8)

В общем случае:

Если ΔG < 0, то процесс является самопроизвольным.

Для процессов при постоянном объеме используется энергия Гельмгольца F (изохорно-изотермический потенциал).

(10)

Если процессы идут в конденсированной фазе или при постоянном объеме, то G и F совпадают.

Увеличение энтропии при эндотермическом растворении веществ ведет к уменьшению энергии Гиббса и, соответственно, свидетельствует о самопроизвольности подобных процессов.

Характер изменения свободной энергии Гиббса зависит от полноты и степени превращения вещества и определяет обратимость и необратимость процесса. Если производная потенциала Гиббса по степени приращения вещества после ее уменьшения обращается в ноль (ΔG = 0), а затем начинает расти, то любые колебания состава приводят к увеличению энергии, что должно возвращать систему в исходное состояние. Это случай для обратимых превращений. Если процессы необратимы, то:

Энергия в данном процессе все время убывает и не имеет минимума.

Параметры, применяемые для описания свободной энергии Гиббса и Гельмгольца, делятся на экстенсивные и интенсивные. Экстенсивные определяются количеством вещества в системе (объемом или массой) и эти параметры могут быть непосредственно изменены. Интенсивные параметры – температура и давление – могут быть определены лишь опосредованно через некоторую величину. Для химической системы с измененным компонентом реакции, экстенсивным параметром является количество вещества, а интенсивным – химический потенциал. Для реакций при p и T = const:

n i – число молей i -ой компоненты.

Для реакций при V и T = const:

Первая производная энергии Гиббса системы по числу молей n i компонента при постоянстве числа молей всех остальных компонентов, а также температуры и давления представляет собой химический потенциал i-го компонента:

(12)

Таким образом, химический потенциал есть парциальная молярная энергия Гиббса.

В общем виде химический потенциал компонента равен приросту любой функции состояния (изменению любого термодинамического потенциала) при постоянстве её естественных переменных и состава раствора, если к бесконечно большому количеству раствора определенного состава добавить 1 моль этого компонента, т.е. в строго равновесных условиях.

При j≠i (13)

В химических процессах обычно происходит изменение количеств нескольких веществ, при этом суммарную свободную энергию можно записать в виде:

Таким образом, важнейшей термодинамической закономерностью является концентрационная зависимость химического потенциала. Другим важным свойством химического потенциала является то, что вещество может самопроизвольно переходить из фазы, в которой его химический потенциал больше в фазу, в которой он меньше. В состоянии равновесия dG = 0, тогда для любого из компонентов химический потенциал будет одинаков во всех фазах системы, где этот компонент присутствует.

Если процесс протекает самопроизвольно, то внутренняя энергия (энтальпия) должны уменьшаться, а энтропия увеличиваться. Для сравнения этих величин их надо выразить в одних единицах, а для этого ΔS умножить на T . В этом случае имеем ΔН – энтальпийный фактор и Т ΔS - энтропийный фактор.

В ходе реакции частицы стремятся к объединению, что ведет к уменьшению энтальпии (ΔН < 0), с другой стороны – должна возрастать энтропия, т.е. увеличиваться число частиц в системе (Т ΔS > 0). "Движущая сила" реакции определяется разностью между этими величинами и обозначается ΔG.

ΔG p , T = ΔH T ΔS

и называется изменением энергии Гиббса (изобарно-изотермический потенциал).

Энергия Гиббса - это часть энергетического эффекта реакции, которую можно превратить в работу, поэтому ее называют свободной энергией. Это тоже термодинамическая функция состояния и, следовательно, для реакции

b B + d D =l L + m M,

энергию Гиббса химической реакции можно рассчитать как сумму энергий Гиббса образования продуктов реакции за вычетом энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов по формуле:

ΔG = l Δ f G L + m Δ f G M – d Δ f G D – b Δ f G B .

где Δ f G энергия Гиббса образования веществ .

Энергия Гиббса образования веществ это изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых при 298 К.

Энергия Гиббса образования простых веществ Δ f G принимается равной нулю. Если образующееся вещество и исходные простые вещества находятся в стандартных состояниях, то энергия Гиббса образования называется стандартной энергией Гиббса образования вещества Δ f G 0 . Ее значения приводятся в справочниках.

Полученное значение ΔG является критерием самопроизвольного течения реакции в прямом направлении, если ΔG < 0. Химическая реакция не может протекать самопроизвольно в прямом направлении, если энергия Гиббса системы возрастает, т.е. ΔG > 0. Если ΔG = 0, то реакция может протекать как в прямом, так и в обратном направлениях, т.е. реакция обратима.

Направление химических реакций зависит от их характера. Так, условие ΔG < 0 соблюдается при любой температуре для экзотермических реакций (ΔН < 0), у которых в ходе реакции возрастает число молей газообразных веществ, и, следовательно, энтропия (ΔS > 0). У таких реакций обе движущие силыН ) и (Т ΔS ) направлены в сторону протекания прямой реакции и ΔG < 0 при любых температурах. Такие реакции являются необратимыми.

Наоборот, эндотермическая реакция (ΔН > 0), в результате которой уменьшается число молей газообразных веществ (ΔS < 0) не могут протекать самопроизвольно в прямом направлении при любой температуре, т.к. всегда ΔG > 0.


Если в результате экзотермической реакции (ΔН < 0) уменьшается число молей газообразных веществ и, соответственно, энтропия (ΔS < 0), то при невысокой температуре ΔН >T ΔS и реакция возможна в прямом направлении (ΔG < 0). При высоких температурах ΔH < T ΔS и прямая реакция самопроизвольно протекать не может (ΔG > 0), а обратная реакция возможна.

Для определения температуры равновесия можно воспользоваться условием:

Т р = ΔН S ,

где Т р – температура, при которой устанавливается равновесие, т.е. возможность протекания прямой и обратной реакций.

Если в результате эндотермической реакции (ΔН > 0) увеличивается число молей газообразных веществ и энтропия системы (ΔS > 0), то при невысоких температурах, когда ΔН >Т ΔS , самопроизвольно прямая реакция идти не может (ΔG > 0), а при высоких температурах, когда ΔН < T ΔS , прямая реакция может протекать самопроизвольно (ΔG < 0).

Связь между ΔG и ΔG 0 выражается уравнением изотермы Вант-Гоффа, которая для реакции

b B + d D = l L + m M

записывается в виде:

либо в виде:

где - относительные парциальные давления соответствующих веществ; концентрации соответствующих растворенных веществ.

Итак, энергия Гиббса позволяет определить возможность протекания реакции расчетным путем, не прибегая к дорогостоящим и длительным экспериментам.

В изохорно-изотермических условиях свободная энергия называется энергией Гельмгольца или изохорно-изотермическим потенциалом и равна

Она характеризует направление и предел самопроизвольного течения химической реакции при изохорно-изотермических условиях, которое возможно при ΔF < 0.


5 Распределение Максвелла для скоростей.

МАКСВЕЛЛА РАСПРЕДЕЛЕНИЕ

распределение по скоростям молекул (ч-ц) макроскопич. физ. системы, находящейся в статистич. равновесии, при условии, чтодвижение молекул подчиняется законам классич. механики (пример - классический идеальный газ). Установлено Дж. Максвеллом в 1859. Согласно М. р., вероятное число молекул в ед. объёма f(v), компоненты скоростей к-рых лежат в интервалах от vx до vx+dvx, от vy до vy+dvy и от vz до vz+dvz, определяются ф-цией распределения Максвелла

где т - масса молекулы, n - число молекул в ед. объёма. Отсюда следует, что число молекул, абс. значения скоростей к-рых лежат в интервале от v до v+dv, также называемое М. р., имеет вид:

Оно достигает максимума при скорости vb=?(2kT/m) , наз. Наиболее вероятной скоростью. Для мол. водорода при T=273 К vb=1506 м/с. При помощи М. р. можно вычислить ср. значение любой ф-ции от скорости молекулы: ср. скорость vb (рис.).

При возрастании темп-ры максимум М. р. (значение vb) смещается к более высоким темп-рам. М. р. не зависит от вз-ствия между молекулами и справедливо не только для газов, но и для жидкостей, если для них возможно классич. описание. Оно справедливо также и для броуновских ч-ц (см. БРОУНОВСКОЕ ДВИЖЕНИЕ), взвешенных в жидкости или газе. М. р. может быть получено из канонического распределения Гиббса для классич. системы интегрированием по всем координатам ч-ц, т. к. в этом случаераспределение по скоростям не зависит от распределения по импульсам. М. р. есть решение кинетического уравнения Больцмана для частного случая статистич. равновесия.

М. р. было подтверждено экспериментально нем. физиком О. Штерном (1920) в опытах с мол. пучками.

Физический энциклопедический словарь. - М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.

МАКСВЕЛЛА РАСПРЕДЕЛЕНИЕ

- распределение по скоростям частиц (молекул) макроскопич. физ. системы, находящейся в статистич. равновесии, в отсутствие внеш. поля при условии, что движение частиц подчиняется законам классич. механики. Установлено Дж. К. Максвеллом (J. С. Maxwell) в 1859. Согласно M. р., вероятное число частиц в единице объёма, компоненты скоростей к-рых лежат в интервалах от V x до , от до и от до , равно , где

Ф-ция распределения Максвелла по скоростям, n - число частиц в единице объёма, т - масса частицы, T - абс. темп-ра. Отсюда следует, что число частиц, абс. значения скоростей к-рых лежат в интервале от и до u +du, равно

Это распределение наз. M. р. по абс. значениям скоростей. Ф-ция F(V )достигает максимума при скорости наз. наиб, вероятной скоростью. Для молекул H 2 при T - 273К u B ~ 1500 м/с. При помощи M. р. можно вычислить ср. значение любой ф-ции от скорости молекул: ср. квадрат скорости ср. квадратичную скорость ср. арифметич. скорость к-рая в

Раза больше u B (рис.).

M. р. по относит, скоростям молекул и имеет вид

откуда следует, что ср. относит, скорость молекул равна

M. р. не зависит от взаимодействия между молекулами и справедливо не только для газов, но и для жидкостей, если для них возможно классич. описание.

В случае многоатомных молекул M. р. имеет место для постунат. движения молекул (для скорости их центра тяжести) и не зависит от внутримолекулярного движения и вращения даже в том случае, когда для них необходимо квантовое описание. M. р. справедливо для броуновского движения частиц, взвешенных в жидкости или газе.

Максвелл использовал для обоснования M. р. детального равновесия принцип. M. р. можно получить из канонического распределения Гиббса для классич. системы, интегрируя по всем пространственным координатам и по всем скоростям, кроме одной, т. к. в классич. случае распределение по скоростям не зависит от распределения по пространственным координатам. M. р. является частным решением кинетического уравнения Больцмана для случая статистич. равновесия в отсутствио впеш. полей. M. р. обращает в нуль интеграл столкновения этого ур-ния, выражающего баланс между прямыми и обратными столкновениями. Во внеш. потенциальном поле имеет место распределение Максвелла - Больцмана (см. Болъцма-на распределение). M. р.- предельный случай Базе - Эйнштейна распределения и Ферми - Дирака распределения в случае, когда можно пренебречь явлением квантового вырождения газа. M. р. подтверждено экспериментально О. Штерном (О. Stern) в 1920 в опытах с молекулярными пучками от источника, помещённого внутри вращающейся цилиндрич. поверхности, и позднее (1947) в опытах И. Эстермана (I. Estermann), О. Симпсона (О. Simpson) и Штерна по свободному падению молекул пучка под действием силы тяжести.


6 Удельная теплоемкость твердых тел.

Наиболее важными способами поглощения тепловой энергии твердым телом являются:

Увеличение интенсивности колебаний атомов;

Увеличение энергии поступательного движения электронов;

Увеличение вращательной энергии молекул.

Первый механизм присущ всем твердым тела. Этот механизм наиболее важен из всех трех. Другие эффекты могут преобладать только в узких температурных интервалах.

Общая энергия твердого тела, как было показано в предыдущей главе, складывается из двух слагаемых. Одним из них является тепловая энергия, другим − энергия, которой обладают твердые тела при абсолютном нуле температуры. Сумма этих величин является внутренней энергией . Эта величина может быть точно определена из эксперимента. Однако исторически сложилось так, что большее внимание уделялось величине теплоемкости твердого тела.

Теплоемкость тела при постоянном объеме (V = const) или постоянном давлении (p = const) определяется как производная от энергии тела по температуре. При изучении твердых тел из эксперимента обычно определяется теплоемкость при постоянном давлении , однако более фундаментальной величиной в физике твердого тела являетсятеплоемкость при постоянном объеме , связанная с соотношением

– термодинамический потенциал, который определяет равновесные термодинамические характеристики системы в зависимости от объема и температуры.
Ривновжний состояние системы многих частиц при определенном объеме и постоянной температуре определяется минимумом свободной энергии.
Название свободная энергия родилась в те времена, когда создавалась теория тепловых машин. Исследования показали, что нагретый газ при охлаждении, что не делай, не отдает всю свою энергию. Ту долю энергии газа, которую можно было отобрать и превратить в полезную работу, стали называть свободной энергией.
Как и любая другая энергия свободна Энегрия в классической физике определяется с точностью до произвольной постоянной. Однако, исходя из квантово-механических представлений, можно установить естественную точку отсчета. При абсолютном нуле температуры, свободная энергия совпадает с энергией основного состояния квантово-механической системы.
Свободная энергия F определяется как

Где T – температура, S – энтропия, а E – внутренняя энергия системы.
Изменение свободной энергии равна работе, выполненной над телом при изотермическом процессе
Дифференциал свободной энергии равна

В случае системы с переменным числом частиц, дифференциал свободной энергии получает дополнительный член

Где? – химический потенциал, N – число частиц.
Термодинамические характеристики системы определяются через производные от свободной энергии. Например, если требуется определить давление в газе или в жидкости при температуре, можно воспользоваться формулой:

.

Аналогично?, если объем газа фиксированный, то его энтропия определяется формулой

.

Если выделить какой объем в газе при условиях свободного обмена атомами с соседними объемами, то при постоянной температуре его химический потенциал определяется как производная от свободной энергии по числу частиц

В статистической физике чаще рассматривается канонический ансамбль Гиббса, т.е. набор одинаковых по составу систем с определенным объемом и при заданной темпаратури – именно в тех условиях, для которых используется свободная энергия.
Вероятность p n реализации состояния n с энергией E n в таком ансамбле определяется формулой

.

Свободная энергия F находится из условия нормирования вероятности.

Где статистическая сумма Z равна

Для классического идеального одноатомного газа свободная энергия равна

Напомним, что второй закон термодинамики определяет критерии самопроиз­вольного протекания процессов в изолированных системах. Однако, подобные условия (отсутствие обмена энергией и веществом с окружающей средой) реализуются сравнительно редко. Поэтому представляется важным сформулировать подобного рода критерии для закрытых систем, где возможен обмен энергией с окружающей средой. Для этого нам потребуется определить две новые функции состояния – энергию Гельмгольца и энергию Гиббса.

Работа процесса в общем случае, как это уже говорилось, зависит от пути процесса. Работа неравновесного процесса меньше, чем работа равновесного процесса, протекающего между теми же начальным и конечным состояниями системы. В самом деле, исходя из уравнения первого закона термодинамики (I, 7а) и уравнения (II, 17а), получаем в общем случае:

δW = dQ – dU £ TdS – dU (III, 1)

Величина правой части этого уравнения не зависит от того, равновесен или неравновесен процесс. В случае равновесного процесса:

dW = dW равн. = TdS – dU (III, 2)

Для неравновесного процесса:

dW < TdS – dU (III, 3)

Сравнивая уравнения (III, 2) и (III, 3), получаем:

dW равн. > dW

Таким образом, работа равновесного процесса максимальна.

Максимальная работа не зависит от пути, а определяется лишь начальным и конечным состояниями системы. Так, при S = const (равновесный адиабатный процесс)

dW = –dU и W макс. = – (U 2 – U 1) (III, 4)

т. е. величина максимальной работы определяется изменением внутренней энергии системы.

Интегрируя при постоянной Т уравнение (III, 2), получаем:

W макс. = T (S 2 – S 1) – (U 2 – U 1) (III, 5)

W макс. = (U 2 – TS 2) +(U 1 – TS 1 ) (III, 6)

Выражения, стоящие в скобках, являются функциями состояния системы. Введя в уравнение (III, 6) обозначение

F º U – TS (III, 7)

получаем (при T = const)

W макс. = – F 2 + F 1 = – (F 2 – F 1) = –DF (III, 8)

где F – функция состояния, называемая энергией Гельмгольца (в настоящее время для обозначения энергии Гельмгольца также используется символ А ). Таким образом, максимальная работа при изохорно-изотермических равновесных процессах равна убыли энергии Гельмгольца системы.

Переписав уравнение (III, 3) в виде

U = F + TS

можно рассматривать внутреннюю энергию, как состоящую из двух частей – свободной энергии F и связанной энергии TS. Лишь часть внутренней энергии – свободная энергия, которую система отдает вовне при T = const , может превратиться в работу (условием для такого превращения является равновесность процесса; в неравновесном процессе свободная энергия частично или полностью переходит в теплоту). Другая часть внутренней энергии – связанная энергия – при изменении системы, если Т = const , не дает работы, а переходит только в теплоту.


Энтропия есть, таким образом, фактор ёмкости связанной энергии.

Для процессов, протекающих с изменением температуры (T const ), деление внутренней энергии на свободную и связанную не может быть проведено и, следовательно, сами термины не имеют общего значения. Поэтому будем пользоваться для функции F названием энергия Гельмгольца.

Полный дифференциал функции F можно получить, дифференцируя уравнение (III, 7):

dF º dU TdS SdT (III, 9)

Сопоставив это уравнение с уравнениями (III, 2) и (III, 3), получим в общем виде:

dF £ -SdT – dW (III, 10)

Откуда при Т = const

(dF) T £ –dW (III, 11)

F 2 – F l = DF < W; –(F 2 – F 1 ) > W (III, 12)

Выражение (III, 12) отражает уже известное нам положение, что работа неравновесного процесса меньше работы равновесного процесса.

Если при равновесном процессе совершается только работа расширения (dW = PdV), то из уравнения (III, 10) получаем:

dF = -SdT – PdV (III, 13)

Это выражение является полным дифференциалом функции F при переменных V и Т.

Полагая T = const и V = const , а также при условии отсутствия всех видов работы (dW = 0) , получаем из уравнения (III, 10):

(F ) V, T £ 0 (III, 13а)

т. е., энергия Гельмгольца системы, находящейся при постоянных V и Т не изменяется при равновесных процессах, при неравновесных процессах ее значение убывает.

Так как система, в которой протекают (и могут протекать) только равновесные процессы, бесконечно близка к равновесию, то сформулированные свойства энергии Гельмгольца позволяют судить о том, находится ли данная система в равновесии или нет. В последнем случае направление неравновесного процесса определяется убылью энергии Гельмгольца при постоянных температуре и объеме системы.

Условия, которым должны удовлетворять процессы, для того чтобы по изменениям величины F можно было судить о направлении этих процессов, иные, чем для энтропии. Для энтропии это были условия постоянства внутренней энергии и объема (изолированная система), для энергии Гельмгольца это условие постоянства объёма и температуры – легко измеримых параметров системы. Энергия Гельмгольца, являясь производным понятием по отношению к энтропии, представляет собой практически более удобный критерий направления процессов, чем энтропия.

Изложенные соображения могут быть выражены следующим положением: энергия Гельмгольца системы, находящейся при постоянных объёме и температуре, уменьшается при неравновесных (самопроизвольных) процессах. Когда она достигает минимального значения, совместимого с данными V и Т, система приходит в равновесное состояние.

·Стандартная энергия Гиббса реакции равна сумме стандартных энергий Гиббса продуктов реакций за вычетом суммы стандартных энергий Гиббса исходных веществ с учетом стехиометрических коэффициентов уравнения реакции.

где - стандартная энергия Гиббса реакции,

- сумма стандартных энергий Гиббса продуктов реакции,

- сумма стандартных энергий Гиббса исходных веществ,

n, n / - стехиометрические коэффициенты исходных веществ и конечных продуктов в уравнении реакции.

Стандартные значения энергии Гиббса для 1 моля вещества при Т = 298 К приведены в справочнике /5, табл.44; 6, табл.1/.

Решение :

1) Расчет энергии Гиббса.

Находим в справочнике /5, табл.44/ значения стандартных энергий Гиббса для веществ реакции:

а) продукты реакции

,

,

б) исходные вещества

,

.

Применяя уравнение (63), получим:

Вывод . Полученное значение энергии Гиббса () указывает на то, что данная реакция в закрытой системе может протекать в стандартных условиях в прямом направлении.

2) Расчет энергии Гельмгольца.

Для расчета изохорно-изотермического потенциала рассмотрим соотношение между энергией Гиббса и энергией Гельмгольца:

, , но .

т.е.

Если в реакции принимают участие только конденсированные фазы (твердые и жидкие вещества), то изменение объема DV равно нулю.

Если в реакции участвуют газообразные продукты, то изменением объема пренебрегать нельзя.

Рассмотрим простейший случай, когда газы, участвующие в реакции, подчиняются законам идеального газа. Тогда согласно уравнению Клапейрона-Менделеева можно записать PDV=DnRT .

Dn=n кон - n исх,

где n кон - число молей газообразных конечных продуктов;

n исх – число молей газообразных исходных веществ.

В нашем примере газообразный продукт один – углекислый газ, поэтому Dn = 0 - 1= - 1.

Вывод . Т.к. полученное в результате расчета значение DF <0, то в изохорно-изотермическом процессе в закрытой системе будет протекать самопроизвольный процесс.

· Для нахождения энергии Гиббса можно применять уравнение (56), которое дает возможность производить расчет как в стандартных условиях, так и при любой другой температуре.

Пример 2 . Вычислить энергию Гиббса и Гельмгольца при Т 1 = 298 К и Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па для реакции:

Как скажется повышение температуры на направления протекания данной реакции?

Решение . Для расчета DG реакции воспользуемся уравнением (56):

,

где DH и DS - соответственно изменение энтальпии и энтропии реакции при заданной температуре:

а) Т =298 К.

Определяем изменение стандартной энтальпии реакции D r H 0 (298) (расчет приведен в примере 1 раздела 1.3.3): D r H 0 (298) = -170,42 кДж.

D r S 0 (298) (расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Вывод . Расчет стандартной энергии Гиббса по справочным данным, приведенный в предыдущем примере, и расчет по уравнению (56), приведенный в данном примере, практически совпадают. Относительная ошибка составляет:

Расчет DF (298) см. в этом же разделе, пример 1.

б) Т = 473 К.

Определяем изменение энтальпии реакции D r H (473) (расчет приведен в примере 2 раздела 1.4.2):

D r H (473) = -125,79 кДж.

Определяем изменение энтропии реакции D r S (473) (расчет приведен в примере 1 раздела 1.5.4):

D r S (473) = -12,9 Дж.

Подставим полученные данные в уравнение (56):

Расчет DF проводим согласно уравнению (64):

Вывод . Ответ на последний вопрос задачи определяется знаком D r S и D r H (см. табл. 1). В нашем случае , т.е. в уравнении член (- TDS) для нашей реакции положителен. Следовательно, с повышением температуры Т в изобарно-изотермическом процессе значение D r G будет возрастать (т.е. становиться менее отрицательным). Это означает, что повышение температуры будет препятствовать протеканию рассматриваемой реакции в прямом направлении.

В изохорно-изотермическом процессе будут наблюдаться аналогичные тенденции для энергии Гельмгольца.

.

Преобразуем данное уравнение и проинтегрируем:

.

Если Т 1 = 298 К, то уравнение примет вид:

или (65)

В зависимости от степени точности возможны три варианта расчета энергии Гиббса по этому способу.

Первый вариант . Предположим, что энтропия реакции не зависит от температуры, т.е. D r S 0 (298) = D r S (Т 2), тогда:

Полученный результат расчета дает существенную погрешность.

Пример 3 . Вычислить энергию Гиббса предложенным способом для реакции:

При Т 2 = 473 К, при постоянном давлении 1,013×10 5 Па.



Решение.

Стандартную энергию Гиббса находим по уравнению (63) (см. пример 1 в разделе 1.5.8.): D r G 0 (298) = -130,48 кДж.

Определяем изменение стандартной энтропии реакции D r S 0 (298) (расчет приведен в примере 1 раздела 1.5.4): D r S 0 (298) = -133,77 Дж.

Подставим полученные данные в уравнение (66) и произведем расчет: .

Вывод . Результат расчета отличается от результата в примере 2,б раздела 1.5.8, т.к. последний вариант является приближенным, не учитывается фазовый переход воды.

Второй вариант. Предположим, что энтропия реакции зависит от температуры

или .

Если теплоемкость не зависит от температуры D r С Р = const , то после интегрирования имеем:

Подставим полученное значение D r S (Т )в (65):

После интегрирования получим:

учитывая зависимость энтропии реакции от температуры.

Решение.

Определяем D r С Р реакции по первому следствию закона Гесса:

Воспользуемся значениями стандартных изобарных теплоемкостей для индивидуальных веществ, приведенных в справочнике /5, табл. 44/:

а) продукты реакции:

,

;

б) исходные вещества:

,

.

Расчет стандартной энергии Гиббса для данной реакции приведен в примере 1 раздела 1.5.8. D r G 0 (298) = -130,48 кДж.

Расчет стандартной энтропии для данной реакции приведен в примере 1 раздела 1.5.4. D r S 0 (298) = -133,77 Дж.

Подставляя полученные значения в (67), получим:

Вывод: данный расчет также является приближенным, т.е. он не учитывает зависимость теплоемкости от температуры, но более точным, чем первый способ, рассмотренный выше.

Пример, рассматриваемый нами, является более сложным, т.к. в предложенном интервале температур у одного из веществ, а именно у воды, существует фазовый переход, что необходимо учитывать. Это усложняет расчет и делает его громоздким.

В таких случаях вычислить энергию Гиббса можно, воспользовавшись формулой (56). Расчет этот приведен в примере 2 раздела 1.5.8.

На практике часто для расчета энергии Гиббса используют метод Темкина - Шварцмана (1946 г.), позволяющий стандартную энергию Гиббса при 298 К пересчитать для любой температуры /1, 4, 7, 8/.

Пример 5. Вычислить изменение энергии Гиббса при изотермическом сжатии 0,005 м 3 кислорода от Р 1 =0,1013×10 5 Па до Р 2 =1,013×10 5 Па (Т = 0 0 С ), считая кислород идеальным газом.

Решение. Из уравнение Менделеева-Клапейрона находим число молей кислорода, участвующих в реакции:

Для определения DG воспользуемся формулой (58):

.

Т.к. процесс протекает при Т= const, то второе слагаемое будет равно нулю. Расчет проводим по формуле dG = VdP.

Из уравнения Менделеева-Клапейрона выразим V:

Подставляем:

.

Интегрируем и подставляем данные задачи:

Вывод. При изотермическом сжатии кислорода процесс не может протекать самопроизвольно.

Пример 6. Теплота плавления льда при 0 0 С равна 335 Дж/г. Удельная теплоемкость воды равна . Удельная теплоемкость льда равна . Найти DG, DH, DS для процесса превращения 1 моль переохлажденной воды при – 5 0 С в лед.