Как накопить и сохранить энергию из возобновляемых источников. Классификация тепловых аккумуляторов

Тепловой аккумулятор - устройство для аккумулирования тепловой энергии основанное на использовании физического или химического процесса, связанного с поглощением и выделением теплоты. К основным из них относятся накопление-выделение внутренней энергии при нагреве-охлаждении твердых или жидких тел, фазовые переходы с поглощением-выделением скрытой теплоты, процесс сорбции -десорбции или обратимая химическая реакция, протекающая с выделением-поглощением тепла.

Аккумуляцией (аккумулированием) тепловой энергии или аккумуляцией теплоты называется процесс накопления тепловой энергии в период ее наибольшего поступления для последующего использования, когда в этом возникнет необходимость. Процесс накопления энергии называется зарядкой, процесс ее использования – разрядкой.

Классификация тепловых аккумуляторов

По типу процесса в аккумуляторах теплоты различают:

  • тепловое аккумулирование энергии твердыми и жидкими телами за счет изменения температуры вещества - теплоёмкостная аккумуляция;
  • тепловое аккумулирование энергии посредством использования теплоты фазового перехода;
  • термохимическое аккумулирование тепловой энергии.

По временному фактору использования аккумуляторов теплоты различают:

  • тепловые аккумуляторы краткосрочного (суточные) действия - цикла работы (зарядка/разрядка) не превышает продолжительности суток;
  • тепловые аккумуляторы долгосрочного действия - продолжительность процесса зарядки и разрядки превышает продолжительность суток (может достигать недельного, месячного и годового периода).

Конструктивное различие между первыми и вторыми сказывается в первую очередь на их размерах, что связано с необходимостью аккумулирования разного количества теплоты. Кроме того, тепловые аккумуляторы долгосрочного действия необходимо хорошо теплоизолировать из-за необходимости длительного хранения запасенной теплоты.

По интервалу рабочих температур тепловые аккумуляторы можно разделить на 4 группы:

  • для производства холода - Т < 20 °С
  • низкотемпературные - 20 °С < Т < 200 °С
  • среднетемпературные - 200 °С < Т < 500 °С
  • высокотемпературные - Т > 500 °С

Наиболее широкое применение нашли низкотемпературные тепловые аккумуляторы, использование которых связано с системами жизнеобеспечения человека, экологически чистыми способами производства энергии и оптимизацией потребления энергии.

Использование тепловых аккумуляторов для производства холода связано с необходимостью хранения пищевых продуктов и медицинских тканей, в том числе в условиях транспортировки.

Средне- и высокотемпературные тепловые аккумуляторы пока не нашли широкого применения в промышленности. Применение среднетемпературных тепловые аккумуляторы связано в основном с энергетическими установками (например, солнечные электростанции) и системами утилизации тепла.

Высокотемпературными тепловые аккумуляторы могут найти применение в металлургии и энергетике.

Теплоёмкостная аккумуляция

Теплоёмкостная аккумуляция основана на способности веществ запасать энергию при нагревании. Вещества, используемые для накопления тепловой энергии, называются теплоаккумулирующими материалами. При этом количество аккумулированной энергии зависит от температуры, на которую нагревается теплоаккумулирующий материал, и его удельной теплоемкости. Этот способ является наиболее простым и давно применяется, например, при отоплении печами , которые выполняются достаточно массивными и накапливают во время нагрева тепло, которое затем постепенно расходуется на обогрев помещения. С точки зрения величины удельной теплоемкости, т.е. способности аккумулировать теплоту в расчете на 1 кг массы , одним из самых хороших является вода .

Тепловые аккумуляторы с использованием теплоты фазового перехода

В данном типе тепловых аккумуляторов аккумулирование тепловой энергии основанное на использовании обратимого процесса фазового перехода плавление-затвердевание. В этом случае в качестве теплоаккумулирующего материала используется фазоменяющий материал. Реализация этого способа оказывается более сложной, из-за необходимости усложнения конструкции. Однако в таких тепловых аккумуляторах на единицу объема запасается гораздо большее количество теплоты. При этом процесс зарядки и разрядки может быть осуществлен в узком температурном диапазоне, что оказывается очень важным при необходимости работы тепловых аккумуляторов в условиях небольших температурных напоров.

Некоторые применения тепловых аккумуляторов с использованием теплоты фазового перехода

Пленочная теплица с аккумулятором теплоты в грунте:
1 - теплица
2 - аккумулятор тепла
3, 4 - каналы
5, 6 - трубы
7 - вентилятор

Тепловой аккумулятор для автомобиля

В строительстве

Стеновые панели с использованием фазоменяющих материалов. Как правило, это смесь бетона с парафином или с включенными в него небольшими капсулами, содержащими фазоменяющий материал. Панели с фазоменяющими материалами используются в качестве ограждающих конструкций здания и поглощают излишнее тепло в дневное время, отдавая его в ночное, когда отсутствует поступление солнечной радиации. Резкие перепады между дневными и ночными температурами особенно характерны для климата пустынь и полупустынь. Эффективность их использования так же связана с тем, что в них сочетаются свойства тепловой защиты, термостабилизатора и собственно аккумуляции тепла. При этом конструкция системы аккумулирования оказывается предельно простой.

В сельском хозяйстве

В сельском хозяйстве тепловые аккумуляторы используются для обогрева теплиц в ночное время с использованием тепла накопленного в светлое время суток. Вентилятор осуществляет циркуляцию воздуха в теплице через тепловой аккумулятор. Избытки тепла в дневное время служат для зарядки теплового аккумулятора, а в ночное время тепловой аккумулятор разряжается и подогревает воздух в теплице.

В системах вентиляции

Применение тепловых аккумуляторов в системах вентиляции для сглаживания перепадов температур в дневное и ночное время. В дневное время происходит зарядка аккумулятора и охлаждение поступающего воздуха, а ночью его нагрев и, соответственно, разрядка теплового аккумулятора. Резкие перепады между дневными и ночными температурами особенно характерны для климата пустынь и полупустынь.

В системах электроотопления и электрического нагрева воды для горячего водоснабжения

Применение тепловых аккумуляторов для зарядки путем электронагрева в ночное время и использование теплоты в дневное позволяет значительно сократить расходы на электрическую энергию за счёт потребления электроэнергии в ночное время по более низкому тарифу.

В автомобильной промышлености

Применение тепловых аккумуляторов для облегчения пуска двигателя и обогрева салона автомобиля в холодное время. Теплота, запасается во время работы двигателя и может храниться в течение нескольких дней. Для этого тепловой аккумулятор помещается в сосуд Дьюара (термос), обеспечивающий наилучшую теплоизоляцию.

Впервые тепловой аккумулятор предложил канадский конструктор Оскар Шатц. Первые автотермосы появились в Канаде под брендом Centaur, эта компания функционирует и поныне. Среди отечественных разработчиков термосов лидерами можно назвать «Автоплюс МАДИ» и «АвтоТерм».

Термохимическое аккумулирование тепловой энергии

Способ термохимического аккумулирования тепловой энергии основан на использовании обратимых химических реакций. Он позволяет запасать тепловой энергии на единицу массы больше, чем в первых двух случаях, но сложен в реализации.

Статус рассмотрения проекта Координационным Советом: Не рассматривался . Объекты внедрения: Промышленность , Некапитальные, легковозводимые временные сооружения, в т.ч. торговые , Учреждения социальной сферы (школы, больницы, детские сады и т.д.) , Административные и общественно-бытовые здания и сооружения . Эффект от внедрения:
- для объекта: повышение тепловой устойчивости зданий, снижение платы за потребленную энергию в соответствии с двухзоновым тарифным коэффициентом;
- для муниципального образования: снижение потерь электроэнергии в энергосистеме, упрощение управления мощностями в энергосистеме, повышение тепловой устойчивости зданий.

Аккумулирование тепла позволяет: повысить теплоустойчивость зданий, повысить КПД автономных источников электроэнергии, обеспечить простую схему возврата тепловой энергии стоков, снизить стоимость электрообогрева как производственных площадей, так и отдельных квартир, в которых устанавливаются ТЕПЛОНАКОПИТЕЛИ.

Тепловой аккумулятор в сравнении с другими аккумуляторами обладает следующими преимуществами: простота устройства, относительно низкая себестоимость, эффективные массогабаритные характеристики, долговечность.

Теплоаккумуляторы применяются для:

  • повышения тепловой устойчивости зданий;
  • повышения КПД автономных источников электроэнергии;
  • возврата тепловой энергии стоков;
  • обогрева помещений.

ПОВЫШЕНИЕ ТЕПЛОВОЙ УСТОЙЧИВОСТИ ЗДАНИЙ

В условиях аварий на теплоцентралях и тепловых сетях или плановых отключений важным фактором является тепловая устойчивость зданий, к которым прекращена подача тепла. Тепловой устойчивостью здания (помещения) принято понимать способность здания сохранять накопленное тепло в течение определенного времени (которого может стать недостаточно для ликвидации аварий) при изменяющихся тепловых воздействиях. Оборудование зданий теплоаккумулятором позволяет повысить его тепловую устойчивость, т.е. дать дополнительное время для устранения аварии. Теплоаккумуляторы можно устанавливать в уже существующих зданиях, но разработка теплоаккумуляторов на стадии проектирования нового строительства позволит более успешно решить задачу тепловой устойчивости зданий.

Размещение теплоаккумулятора в существующих подвалах затруднительно вследствие дефицита пространства. В арсенале технологий имеются разработки с достаточно эффективными массогабаритными параметрами.

Тепло, накопленное и сохраняемое в теплоаккумуляторе, в случае преднамеренного или аварийного отключения подачи тепла в здание, будет поддерживать приемлемую температуру в здании в течение более продолжительного времени, что облегчит проведение мероприятий по устранению аварии или решению иных задач.

ПОВЫШЕНИЕ КПД АВТОНОМНЫХ ИСТОЧНИКОВ ЭЛЕКТРОЭНЕРГИИ

Известно, что КПД бензо-, дизельагрегатов и газо-поршневых (в т.ч. на природном газе) электростанций сравнительно невелик (25-30%). Особенно он мал при недогрузке мощности электростанции.

При наличии теплоаккумулятора вся тепловая энергия электростанции используется для его зарядки. Избыток электроэнергии также направляется в теплоаккумулятор. Т.о. КПД автономного источника становится соизмеримым с КПД котла (порядка 85%), а стоимость электроэнергии, получаемой на такой электростанции, будет в несколько раз ниже сетевой.

Такое решение пригодно как для организаций, устраняющих аварии, так и для любого автономного потребителя (отдельно стоящий коттедж, дом, подъезд в доме, гараж и т.д.)

ВОЗВРАТ ТЕПЛОВОЙ ЭНЕРГИИ СТОКОВ

Установка теплоаккумуляторов позволяет решить и некоторые задачи энергосбережения. Так, установка тепловых насосов в системе канализационных стоков и закачка утилизированной энергии в теплоаккумулятор, позволит частично вернуть потери тепла, связанные со сбросом теплой воды в канализацию.

ОБОГРЕВ ПОМЕЩЕНИЙ С ПРИМЕНЕНИЕМ ТЕПЛОНАКОПИТЕЛЕЙ

Существующее положение о тарифном регулировании предусматривает значительно более низкий тариф на электроэнергию, потребляемую в ночное время по сравнению с дневным, что связано с необходимостью выравнивания графиков потребления электроэнергии и что важно для нормальной работы единой энергетической системы. Это позволяет пропорционально снизить затраты на обогрев помещения, но требует установки теплоаккумулирующих нагревательных приборов.

Затраты на установку теплонакопителей окупаются в среднем за 2-3 года за счет более дешевой стоимости 1 кВт. ч.

Хозяйствующие субъекты, использующие теплонакопители в широких масштабах, т.е. являющиеся потребителями большого количества электроэнергии, могут самостоятельно приобретать энергию на ФОРЭМе, где она обходится значительно дешевле.

Компании, внедряющие данную технологию / оказывающие данную услугу:

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Жидкостные тепловые аккумуляторы. Физические основы для его создания. Аккумуляторы тепла, основанные на фазовых переходах. Особенности тепловых аккумуляторов с твёрдым теплоаккумулирующим материалом. Конструкция теплового аккумулятора фазового перехода.

    реферат , добавлен 18.01.2010

    Особенности конструкции разработанной фритюрницы для приготовления картофеля фри. Расчет полезно используемого тепла. Определение потерь тепла в окружающую среду. Конструирование и расчет электронагревателей. Расход тепла на нестационарном режиме.

    курсовая работа , добавлен 16.05.2014

    Общие сведения о солнце как источнике энергии. История открытия и использование энергии солнца. Способы получения электричества и тепла из солнечного излучения. Сущность и виды солнечных батарей. "За" и "против" использования солнечной энергии.

    реферат , добавлен 22.12.2010

    Характеристика Солнца как источника энергии. Проектирование и постройка зданий с пассивным использованием солнечного тепла, способы уменьшения энергопотребления. Виды концентрационных станций, конструкции активной гелиосистемы и вакуумного коллектора.

    реферат , добавлен 11.03.2012

    Фотоэлектрическое преобразование солнечной энергии. Элементы солнечных батарей. Регуляторы зарядки и разрядки аккумуляторов, отбора мощности батареи. Технические характеристики, устройство и принцип работы современных термоэлектрических генераторов.

    реферат , добавлен 16.02.2015

    Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа , добавлен 30.07.2012

    Расчет расхода тепла на отопление, вентиляцию, горячее водопотребление. Графики часового и годового потребления тепла по периодам и месяцам. Схема теплового узла и присоединения теплопотребителей к теплосети. Тепловой и гидравлический расчет трубопровода.

    курсовая работа , добавлен 25.01.2015

    Определение параметров цикла со смешанным подводом теплоты в характерных точках. Политропное сжатие, изохорный подвод тепла, изобарный подвод тепла, политропное расширение, изохорный отвод тепла. Количество подведённого и отведённого тепла, КПД.

    контрольная работа , добавлен 22.04.2015

Алтайский государственный технический университет

им. И. И. Ползунова

Заочный факультет

по дисциплине Нетрадиционные источники энергии.

тема: Аккумулирование тепла

Проверил: В.В. Чертищев

Барнаул 2007


Введение

Глава 1. Физические основы для создания теплового аккумулятора

Глава 2. Жидкостные тепловые аккумуляторы

Глава 3. Тепловые аккумуляторы с твёрдым теплоаккумулирующим материалом.

Глава 4. Аккумуляторы тепла, основанные на фазовых переходах.

Глава 5. Конструкция ТА фазового перехода.


Введение

Сейчас во всем мире идет повсеместная экономия сырьевых ресурсов. Ученые многих стран пытаются решить эту проблему различными методами, в том числе и с помощью применения альтернативных источников энергии. К ним можно отнести такие виды, как использование водных ресурсов малых рек, морских волн, гейзеров и даже отходов производства и бытового мусора.

Но возникает проблема сохранения полученной энергии. Например, тепловую энергию, полученную в солнечной водонагревательной установке, можно сохранить в тепловом аккумуляторе, и использовать в темное время суток.

Тепловые аккумуляторы известны человечеству с глубокой древности. Это и горячая зола, куда наши предки закапывали продукты для их тепловой обработки, и горячие камни, которые накаливали на огне. Утюг, который нагревают на огне, а затем гладят им,- тепловой аккумулятор. Накаленные камни, которые мы поливаем водой (квасом, пивом) в парилках,- тоже аккумулятор тепла. Термобигуди, которые кипятят в воде, а затем с их помощью делают прическу,- тоже тепловые аккумуляторы, причем достаточно совершенные, основанные на аккумулировании плавлением.

Итак, каждое тело, нагретое выше температуры окружающей среды, можно считать аккумулятором тепла. Это тело способно, охлаждаясь, производить работу, а, следовательно, обладает энергией.


Глава 1.Физические основы для создания теплового аккумулятора

Аккумулятором тепла называется устройство (или совокупность устройств), обеспечивающее обратимые процессы накопления, хранения и выработки тепловой энергии в соответствии с требованиями потребителя.

Процессы аккумулирования тепла происходят путем изменения физических параметров теплоаккумулирующего материала и за счет использования энергии связи атомов и молекул веществ.

Исходя из первого закона термодинамики для незамкнутой системы постоянного химического состава характеристики аккумуляторов тепла зависят от изменения массы, объема, давления, энтальпии и внутренней энергии материала, а также различных их комбинаций.

В зависимости от технической реализации используется прямее аккумулирование тепла, когда аккумулирующий материал является одновременно и теплоносителем, косвенное аккумулирование - при различных теплоаккумулирующих и теплопередающих средах, а также различные виды симбиоза названных случаев.

Изменение энтальпии теплоаккумулирующего материала (ТАМ) может происходить как с изменением его температуры, так и без такового - в процессе фазовых превращений (например, твердое - твердое, твердое - жидкое, жидкое - пар).

Тепловые аккумуляторы реализуют, как правило, несколько элементарных процессов.

На современном этапе развития науки и техники существует возможность реализации практически любого известного принципа аккумуляции тепла. Целесообразность использования каждого принципа определяется наличием положительного эффекта, в первую очередь, экономического, достижение которого возможно при минимальной стоимости аккумулятора. Она определяется при прочих равных условиях массой и объемом теплоаккумулирующего материала, необходимого для обеспечения заданных параметров процесса.

В реальном процессе аккумулирования тепла плотность запасаемой энергии оказывается существенно ниже теоретического значения вследствие потерь тепла, выравнивания поля температур, потерь при заряде и разряде. Отношение реального и теоретического значений плотности запасаемой энергии и определяет эффективность теплового аккумулятора.

Одним из важнейших показателей, определяющих возможность и целесообразность аккумулирования тепла, является способность выделять энергию в количествах, необходимых потребителю. При прямом аккумулировании тепла это достигается практически всегда. Показатели таких аккумуляторов слабо зависят от вырабатываемой мощности, которая определяется расходом ТАМ и ограничивается только конструктивными и прочностными требованиями.

При косвенном аккумулировании повышение вырабатываемой мощности увеличивает градиент температур и ТАМ, что приводит либо к увеличению поверхности теплообмена, либо к неполному использованию запаса тепла. В любом случае это снижает эффективность аккумулирования.

Глава 2. Жидкостные тепловые аккумуляторы

К числу наиболее простых и надежных устройств аккумулирования тепла, несомненно, относятся жидкостные ТА, что связано с совмещением функций теплоаккумулирующего материала теплоносителя. Вследствие этого аккумуляторы такого типа особенно широко применяются для бытовых целей, в схемах различных электростанций (АЭС, АТЭЦ, солнечные и др.). В настоящее время применяются несколько основных конструктивных исполнений жидкостных ТА. Двухкорпусной ТА характеризуется раздельным хранением горячего и холодного ТАМ. В процессе зарядки один корпус заполняется горячим ТАМ, а другой – опорожняется. При работе горячий ТАМ подается потребителю и, отработав, попадает в корпус холодного ТАМ. Основным достоинством такого исполнения ТА является изотермичность каждого из корпусов и, как следствие, отсутствие в них термических напряжений и потерь, энергии на нагрев - охлаждение. Очевидно также, что объем корпусов используется нерационально и почти вдвое превышает объем ТАМ. Такое принципиальное решение целесообразно при большой разнице температур горячего и

холодного ТАМ, особенно в случаях использования солевых ТАМ и жидких металлов.

Рис. 2. Основные типы жидкостных аккумуляторов тепла (магистрали показаны в режиме разряда): а - двухконтурный; б - многокорпусный; в - вытеснительный; с - со скользящей температурой ТАМ; 1 - горячий ТАМ; 2 - холодный ТАМ; 3– потребитель; 4 - единый корпус; 5 - уровень жидкости; 6 - промежуточный теплоноситель.

С целью более рационального использования объема аккумулятора предложен многокорпусный вариант, в котором используется несколько корпусов с горячим ТАМ и один пустой (холодный). По мере разрядки заполняется сначала этот корпус, а затем освобождающиеся горячие по мере их опорожнения. Это приводит к появлению термических напряжений и потерь на нагрев во всех корпусах, кроме одного.

Наиболее рационально используется объем теплового аккумулятора в случае применения единого корпуса, заполненного в начале процесса горячим ТАМ.

В процессе работы горячий ТАМ забирается из верхней части ТА, а отработанный холодный ТАМ подается в нижнюю часть ТА. Такой тип жидкостного аккумулятора называется вытеснительным. Вследствие разности плотностей горячей и холодной жидкостей может обеспечиваться малое перемешивание жидкости (эффект «термоклина»), эффективность использования вытеснительных ТА снижается вследствие потерь тепла на перемешивание и теплопроводности между объемами горячего и холодного ТАМ, нагрев корпусов и т. п.

Тепловые аккумуляторы такого типа применяются для жидкостей, имеющих большой коэффициент линейного расширения.

При особых свойствах ТАМ или нецелесообразности для потребителя использования ТАМ в качестве теплоносителя применяются тепловые аккумуляторы со скользящей температурой (рис. 2, г ).

В этом случае промежуточный теплообменник может размещаться как в корпусе ТА, так и вне его. В процессе заряда происходит нагрев ТА с использованием либо промежуточного теплоносителя, либо электроэнергии, а в процессе остывания производится отвод тепла в промежуточном теплообменнике. Одним из характерных примеров такого ТА является «солнечный пруд», в котором отбор ТАМ нежелателен вследствие разрушения обратного градиента солености воды.

Конструктивное исполнение жидкостного теплового аккумулятора во многом определяется свойствами теплоаккумулирующего материала. В настоящее время наиболее широко применяются вода и водные растворы солей, высокотемпературные органические и кремнийорганические теплоносители, расплавы солей и металлов.

В диапазоне рабочих температур 0...100 о С вода является лучшим жидким ТАМ как по комплексу теплофизических свойств, так и по экономическим показателям. Дальнейшее повышение рабочей температуры воды связано с существенным ростом давления, что усложняет проектирование корпуса, повышает его стоимость. С целью обеспечения низких рабочих давлений ТАМ используются различные высокотемпературные теплоносители. При этом возникают проблемы подбора конструкционных материалов теплового аккумулятора и системы в целом, применения специальных устройств, предотвращающих отвердение ТАМ на всех режимах эксплуатации, герметизации ТА и ряд других.

Кроме этого, использование наиболее распространенного вытеснительного типа ТА связано с комплексом конструктивных и эксплуатационных мероприятий, обеспечивающих минимальные потери энергии.

Устройства для преобразования возобновляемой энергии по сравнению с установками на обычном и ядерном топлив различаются по требованиям к аккумулированию и передаче на расстояние. Такие особенности возобновляемых источников, как низкая интенсивность и рассеянность, делают для них предпочтительным децентрализованное потребление. Более того, энергию от этих источников часто не нужно будет передавать на большие расстояния, так как источники уже распределены в пространстве.

Так как полезность устройств для преобразования возобновляемой энергии основана на переработке независимых от нас естественных потоков, существует проблема приведения в соответствие выработки энергии и потребности в ней в рамкам временного спроса, т.е. в выравнивании скорости потребления энергии. Последняя изменяется во времени в масштаба месяцев (например, для обогрева жилищ в зонах умеренного климата), дней (например, для искусственного освещения) и даже секунд (в моменты включения крупных нагрузок). в противоположность энергетике на традиционном топливе получаемая из окружающей среды мощность возобновляемых источников нам не подконтрольна.

У нас есть выбор: либо подгонять нагрузку к интенсивности. доступной для преобразования возобновляемой энергии, либо накапливать энергию для последующего использования. У нас на выбор самые различные способы аккумулирования:

¾ химические;

¾ тепловые;

¾ электрические, в форме потенциальной или кинетической энергии.

Аккумулирование энергии - не новая концепция в энергетике. Ископаемые топлива в этом смысле являются эффективным аккумулятором с высокой плотностью энергии. Однако по мере того, как источники топлива становятся все менее доступными и все более дорогими, появляется необходимость в развитии других методов аккумулирования, и в качестве одного из них - производства возобновляемого топлива.

5.2. Химическое аккумулирование.

Энергия может удерживаться в связях многих химических элементов и выделятся в процессе экзотермических реакций, из которых наиболее известно горение. Иногда необходимо применить для запуска такой реакции предварительной нагревание или катализаторы (например, энзимы). Биологические компоненты представляют особый случай. Здесь речь идет лишь о неорганических соединениях, являющихся наиболее распространенными аккумуляторами, энергия которых выделяется при сгорании в воздухе.

Водород. Может быть получен путем электролиза воды с помощью любого источника тока. В виде газа он может быть накоплен, передан на расстояние и сожжен для получения тепловой энергии. Единственным продуктом сгорания водорода является вода: не образуется никаких загрязняющих веществ. Энтальпия образования водорода Н=-242 кДж/моль, т.е. при образовании 1 моля Н2 О (18 г) выделяется 242 Дж тепловой энергии. Хранить водород в больших количествах непросто. Наиболее обещающий способ - использование подземных каверн, подобных тем, из которых добывается природный газ. Но хранение газа - даже под высоким давлением - требует значительных объемов. Необходимо заметить, что водород можно передавать через разветвленную сеть трубопроводов, используемых сейчас для подачи природного газа во многих странах мира. Кроме того, существует возможность с большой эффективностью использовать его для

Рис. 5.1 Грунтовый аккумулятор тепла

непосредственного получения электроэнергии с помощью топливных элементов.

Аммиак. В отличие от воды аммиак может быть разложен на составляющие элементы при доступных температурах:

N2 + 3H2 2NH3

В сочетании с принципом теплового двигателя эта реакция может стать основой наиболее эффективного способа непрерывного получения электроэнергии за счет использования солнечного тепла.

5.3. Аккумулирование тепловой энергии.

Использование низкотемпературного тепла составляет существенную часть мирового потребления энергии. Существенно не обязательно использовать для обогрева высокотемпературные источники энергии, которые гораздо лучше сберечь для других целей. Для обогрева жилищ больше подходят пассивные приемник солнечного тепла в сочетании с тепловыми аккумуляторами, поддерживающими комфортные условия по ночам и в пасмурные дни. Более того, именно в тех случаях, когда, энергия используется при низких температурах, характерных для среды,

ее особенно ценно

накапливать в форме тепла. Тепловое аккумулирование плодотворно и при использовании "отходов"

тепла, возникающих в процессе работы различных установок. Запастись на три месяца теплом для обогрева жилого дома - вполне решаемая задача. Правда при этом важно не только сделать хороший проект, но и грамотно его реализовать.

В частности, необходимо качественно выполнить теплоизоляцию и предохранить дом от сырости, снабдить его управляемой системой вентиляции (возможно, с рециркуляцией тепла), использовать все "отходы" тепла от освещения, приготовления пищи, жизнедеятельности самих обитателей. Существуют примеры подобных высокотехнологичных домов, обладающих кроме всего прочего прекрасной архитектурой и создающих идеальные условия для жизни. Отметим, что в качестве аккумулирующей тепло среды предпочтительнее использовать вместо воды скальные породы.

На рис.5.1. показан пример использования аккумулятора тепла в виде грунтового теплообменника.

В течение короткого периода продолжительностью до четырех дней сами здания можно использовать в качестве аккумуляторов тепла. При проектирование зданий для стран с жарким климатом важное применение по аналогии с созданием запасов тепла может найти аккумулирование холода.

Известно, что использование аккумулирования тепла в широком масштабе высокоширотными морскими странами позволило бы решить проблемы снабжения теплом за счет развития ветро- и волноэнергетики. Оба эти источника наиболее производительны зимой, а их мощность, хотя и изменяется периодически час от часу, редко существенно падает более чем на несколько дней. Значительно большей теплоемкостью в ограниченном интервале температур по сравнению с системами использующие поглощение тепла, обладают материалы, при изменении температуры изменяющие фазовое состояние. Например, глауберову соль (Na2 SO4 10H2 O) можно использовать для аккумулирования тепла уже при комнатной температуре. При 32о С она разлагается на насыщенный раствор N2 SO4 с выпадением части Na2 SO4 в

осадок. Эта реакция обратима и дает 250 кДж/кг ≈ 650 МДж/м3 тепловой энергии. Так как большая часть стоимости аккумуляторов для обогрева зданий связана со стоимостью конструкций, такие аккумуляторы могут оказаться дешевле, чем водяные емкости с более низкой удельной плотностью запасания