Энергия гиббса. Изменение энергии гиббса в химических реакциях

Для расчета стандартного изменения энтропии химической реакции А,.5° необходимо знать энтропию отдельных веществ. Для индивидуальных веществ может быть определено абсолютное значение энтропии на основе постулата, называемого третьим началом термодинамики: энтропия идеального кристалла при абсолютном нуле температуры равна нулю. Тогда по известной теплоемкости вещества можно вычислить энтропию при данной температуре по уравнению

Энтропия вещества последовательно возрастает при переходе от твердого к жидкому и газообразному состоянию, так как при этих фазовых переходах поглощается теплота и растет неупорядоченность. В химических реакциях энтропия возрастает особенно существенно при увеличении количества вещества газов. Поэтому знак AS можно определять «на глаз». Рассматривая реакцию

можно сказать, нс производя расчетов, что энтропия смеси в ходе реакции при постоянной температуре уменьшается, так как из 3 моль газа получается 2 моль газа.

В таблицы термодинамических свойств веществ вносятся значения стандартной энтропии , т.е. энтропии 1 моль вещества 5°, ДжДмольК), при стандартных условиях (приложение 3).

Для химической реакции стандартное изменение энтропии вычисляется по формуле, аналогичной расчету А,Н° по закону Гесса:

Таблицы термодинамических свойств веществ содержат также стандартные значения изменения энергии Гиббса образования сложных веществ из простых веществ, обозначаемые как AjG°. По этим данным рассчитывается стандартное изменение энергии Гиббса химической реакции A r G°:

Следует обратить внимание на то, что A r G° относится к одному обороту химической реакции в системе, находящейся в стандартном состоянии. Это понятие подразумевает концентрации всех веществ в растворе 1 моль/л или давление каждого газа в смеси 101,3 кПа. Отсюда следует, что A,.G изменяется по мере протекания реакции, так как изменяются концентрации веществ. Подробнее это разъясняется в следующей главе.

Расчет А Г С° производят как по табличным значениям AfG° веществ, участвующих в реакции, так и по предварительно вычисленным значениям А,Н° и Д,^, после чего применяют формулу (9.12) для изменения энергии Гиббса:

Пример 9.8. Рассчитайте двумя способами A r G° при 298,15 К для реакции оксида азота(П) с кислородом. Обсудите результат.

Решение. Напишем уравнение реакции и найдем необходимые табличные данные.


Рассчитаем изменения функций состояния для данной реакции:

Рассчитаем изменение энергии Гиббса но уравнению (9.12), обратив внимание на использование энергетических единиц (энтропия в Дж/К, энтальпия в кДж):

Расчет A r G° двумя способами дал практически совпадающие результаты. Поскольку расчет проведен для стандартного состояния, мы можем сказать, что в стандартном состоянии реакция идет самопроизвольно. В данной реакции изменение энтропии отрицательно, что можно обнаружить, просто рассматривая уравнение реакции (см. выше). Здесь энтропийный фактор не способствует протеканию реакции. Но изменение энтальпии тоже оказалось отрицательным (реакция экзотермическая) и способствующим протеканию реакции. В данном случае энергетический фактор контролирует направление реакции, так как абсолютное значение Д, Н° превысило слагаемое TA,.S°.

Пример 9.9. Имеется реакция 20 3 = 30 2 , для которой Л,.//° = 285,8 кДж и Д,.5° = = 137,8 Дж/К. Какая из двух реакций - прямая или обратная - идет самопроизвольно?

Решение. Из приведенных значений очевидно, что как энергетический, так и энтропийный факторы способствуют протеканию прямой реакции. Для нее заведомо получается отрицательное значение Д,.С°. Обратная реакция, т.е. образование озона, самопроизвольно идти не может. Однако озон образуется при облучении кислорода ультрафиолетовыми лучами.

Пример 9.10. Растворение хлорида натрия в воде, т.е. процесс

характеризуется следующими изменениями функций состояния: Д,.//° = +3,8 кДж/ моль, Д,S° = +43 ДжД.иоль- К), Д,.С° = -9,0 кДж/моль. Оцените роль отдельных факторов и приблизительную величину растворимости.

Решение. Здесь протеканию процесса растворения способствует только энтропийный фактор. Разрушение кристаллической структуры при растворении означает рост неупорядоченности. Это и выражается в увеличении энтропии. Для оценки растворимости снова надо вспомнить, что стандартные значения функций относятся к системе в стандартном состоянии. В данном случае эго раствор хлорида натрия с концентрацией 1 моль/л и кристаллы соли. Таким образом, растворение хлорида натрия идет самопроизвольно в одномолярном растворе, и растворимость, следовательно, превышает 1 моль/л.

В заключение главы рассмотрим понятие термодинамической устойчивости веществ. Об устойчивости или неустойчивости тех или иных веществ приходится говорить достаточно часто, и при этом не всегда ясно, о какой устойчивости идет речь. Коррозия железа означает, что этот металл неустойчив к действию воды и кислорода воздуха. Выделение газа при внесении питьевой соды в кипяток означает, что эта соль разлагается горячей водой. Эта же соль и без участия жидкой воды выделяет углекислый газ и пары воды при нагревании до 270 °С.

Под термодинамической устойчивостью подразумевается устойчивость вещества в данных условиях как такового, т.е. отсутствие у него превращений, идущих самопроизвольно (характеризующихся отрицательными значениями ArG) без участия других веществ.

Хлорид натрия ни в какое другое вещество превратиться не может. Это термодинамически устойчивое вещество. Другое хорошо известное вещество глюкоза, С 6 Н)2 0 6 , может подвергаться различным превращениям, среди которых, например, разложение на графит и воду:

Как видим, у этого превращения отрицательное значение A r G°, и оно должно идти самопроизвольно. Следовательно, глюкоза - термодинамически неустойчивое вещество. Неизбежно возникающий вопрос, почему же глюкоза может длительное время храниться, не превращаясь в другие вещества, будет рассмотрен в гл. 11.

любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции. Такая величина называется тепловым эффектом реакции.

    Тепловой эффект - количество теплоты, выделившееся или поглощенное химической системой при протекании в ней химической реакции.

Тепловой эффект обозначается символами Q или DH (Q = -DH). Его величина соответствует разности между энергиями исходного и конечного состояний реакции:

DH = H кон. - H исх. = E кон. - E исх.

Значки (г), (ж) обозначают газообразное и жидкое состояние веществ. Встречаются также обозначения (тв) или (к) - твердое, кристаллическое вещество, (водн) - растворенное в воде вещество и т.д.

Обозначение агрегатного состояния вещества имеет важное значение. Например, в реакции сгорания водорода первоначально образуется вода в виде пара (газообразное состояние), при конденсации которого может выделиться еще некоторое количество энергии. Следовательно, для образования воды в виде жидкости измеренный тепловой эффект реакции будет несколько больше, чем для образования только пара, поскольку при конденсации пара выделится еще порция теплоты.

Используется также частный случай теплового эффекта реакции - теплота сгорания. Из самого названия видно, что теплота сгорания служит для характеристики вещества, применяемого в качестве топлива. Теплоту сгорания относят к 1 молю вещества, являющегося топливом (восстановителем в реакции окисления), например:

Запасенную в молекулах энергию (Е) можно отложить на энергетической шкале. В этом случае тепловой эффект реакции (Е) можно показать графически

Этот закон был открыт Гессом в 1840 г. на основании обобщения множества экспериментальных данных.

7.Энтропия. Свободная энергия Гиббса. Термодинамический критерий направленности химического процесса.

Энтропия - это сокращение доступной энергии вещества в результате передачи энергии. Первый закон термодинамики гласит, что энергию невозможно создать или уничтожить. Следовательно, количество энергии во вселенной всегда такое же, как было и при ее создании. Второй закон термодинамики гласит, чтокоэффициентполезного действия ни одного реального (необратимого) процесса не может быть 100% при преобразовании энергии в работу.

где ΔS - изменение энтропии, ΔQ - изменениетеплоты,T - абсолютная термодинамическая температура.

Следовательно, количество энергии для преобразования в работу или теплоту непрерывно уменьшается со временем, так как теплота спонтанно переходит из более теплой области к более холодной

Энергия Гиббса и направление протекания реакции

В химических процессах одновременно действуют два противоположных фактора - энтропийный () иэнтальпийный (). Суммарный эффект этих противоположных факторов в процессах, протекающих при постоянном давлении и температуре, определяет изменениеэнергии Гиббса ():

Из этого выражения следует, что , то есть некотороеколичество теплотырасходуется на увеличение энтропии (), эта часть энергии потеряна для совершения полезнойработы(рассеивается в окружающую среду в виде тепла), её часто называютсвязанной энергией. Другая часть теплоты () может быть использована для совершения работы, поэтому энергию Гиббса часто называют также свободной энергией.

Характер изменения энергии Гиббса позволяет судить о принципиальной возможности осуществления процесса. При процесс может протекать, припроцесс протекать не может (иными словами, если энергия Гиббса в исходном состоянии системы больше, чем в конечном, то процесс принципиально может протекать, если наоборот - то не может). Если же, то система находится в состояниихимического равновесия.

Свободная энергия Гиббса (или простоэнергия Гиббса , илипотенциал Гиббса , илитермодинамический потенциал в узком смысле) - это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; этотермодинамический потенциалследующего вида:

Энергию Гиббса можно понимать как полную химическуюэнергиюсистемы (кристалла, жидкости и т. д.)

Понятие энергии Гиббса широко используется в термодинамикеихимии.

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпиисистемы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста еёэнтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж)

Классическим определением энергии Гиббса является выражение

где -внутренняя энергия,-давление,-объём,- абсолютнаятемпература,-энтропия.

Дифференциалэнергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных - черездавлениеp итемпературуT:

Для системы с переменным числом частиц этот дифференциал записывается так:

Здесь -химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну частицу.

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH ), и энтропийным T ΔS , обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G , кДж):

При ΔG G = 0, при котором наступает равновесное состояние обратимого процесса; ΔG > 0 указывает на то, что процесс термодинамически запрещен (рис. 4.4).

Рисунок 4.4.

Изменение энергии Гиббса: а – обратимый процесс; б – необратимый процесс.

Записав уравнение (4.2) в виде ΔH = ΔG + T ΔS , получим, что энтальпия реакции включает свободную энергию Гиббса и «несвободную» энергию ΔS · T . Энергия Гиббса, представляющая собой убыль изобарного (P = const) потенциала, равна максимальной полезной работе. Уменьшаясь с течением химического процесса, ΔG достигает минимума в момент равновесия (ΔG = 0). Второе слагаемое ΔS · T (энтропийный фактор) представляет ту часть энергии системы, которая при данной температуре не может быть превращена в работу. Эта связанная энергия способна лишь рассеиваться в окружающую среду в виде тепла (рост хаотичности системы).

Итак, в химических процессах одновременно изменяются энергетический запас системы (энтальпийный фактор) и степень ее беспорядка (энтропийный фактор, не совершающая работу энергия).

Анализ уравнения (4.2) позволяет установить, какой из факторов, составляющих энергию Гиббса, ответственен за направление протекания химической реакции, энтальпийный (ΔH ) или энтропийный (ΔS · T ).

  • Если ΔH S > 0, то всегда ΔG
  • Если ΔH > 0 и ΔS G > 0, и реакция с поглощением теплоты и уменьшением энтропии невозможна ни при каких условиях.
  • В остальных случаях (ΔH S H > 0, ΔS > 0) знак ΔG зависит от соотношения ΔH и T ΔS . Реакция возможна, если она сопровождается уменьшением изобарного потенциала; при комнатной температуре, когда значение T невелико, значение T ΔS также невелико, и обычно изменение энтальпии больше T ΔS . Поэтому большинство реакций, протекающих при комнатной температуре, экзотермичны. Чем выше температура, тем больше T ΔS , и даже эндотермические реакции становятся осуществляемыми.

Проиллюстрируем эти четыре случая соответствующими реакциями:

ΔH ΔS > 0
ΔG

C 2H 5–O–C 2H 5 + 6O 2 = 4CO 2 + 5H 2O
(реакция возможна при любой температуре)

ΔH > 0
ΔS ΔG > 0

реакция невозможна

ΔH ΔS ΔG > 0, ΔG

N 2 + 3H 2 = 2NH 3 (возможна при низкой температуре)

ΔH > 0
ΔS > 0
ΔG > 0, ΔG

N 2O 4(г) = 2NO 2(г) (возможна при высокой температуре).

Для оценки знака ΔG реакции важно знать величины ΔH и ΔS наиболее типичных процессов. ΔH образования сложных веществ и ΔH реакции лежат в пределах 80–800 кДж∙. Энтальпия реакции сгорания всегда отрицательна и составляет тысячи кДж∙. Энтальпии фазовых переходов обычно меньше энтальпий образования и химической реакции Δ – десятки кДж∙, Δ и Δ равны 5–25 кДж∙.

Зависимость ΔH от температуры выражается соотношением ΔH T = ΔH ° + ΔC p · ΔT , где ΔC p – изменение теплоемкости системы. Если в интервале температур 298 К – Т реагенты не претерпевают фазовых превращений, то ΔC p = 0, и для расчетов можно пользоваться значениями ΔH °.

Энтропия индивидуальных веществ всегда больше нуля и составляет от десятков до сотен Дж∙моль –1K –1 (табл. 4.1). Знак ΔG определяет направление реального процесса. Однако для оценки осуществимости процесса обычно пользуются значениями стандартной энергии Гиббса ΔG °. Величина ΔG ° не может использоваться в качестве критерия вероятности в эндотермических процессах со значительным возрастанием энтропии (фазовые переходы, реакции термического разложнения с образованием газообразных веществ и др.). Такие процессы могут быть осуществлены за счет энтропийного фактора при условии

Задачи и тесты по теме "Химическая термодинамика. Энергия Гиббса"

  • Химические элементы. Знаки химических элементов - Первоначальные химические понятия и теоретические представления 8–9 класс

    Уроков: 3 Заданий: 9 Тестов: 1

Понятие свободной энергии Гиббса было введено в химию с целью объяснения возможности самопроизвольного или спонтанного протекания той или иной реакции. Расчет этой энергии требует знания изменения энтропии процесса и количества энергии, которое поглощается или выделяется при его осуществлении.

Джозайя Уиллард Гиббс

Свободная энергия, которая определяет возможность протекания различных процессов, обозначается большой буквой G. Она получила название энергии Гиббса в честь американского физика-теоретика XIX века Джозайя Уилларда Гиббса, который внес важнейший вклад в развитие современной теории термодинамики.

Интересно отметить, что первый свой тезис, после защиты которого Гиббс получил звание доктора философии, он написал о форме зубцов шестерен. В этом исследовании он использовал геометрические методы для разработки идеальной формы этих зубцов. Термодинамикой ученый начал заниматься лишь в возрасте 32 лет, и в этой области физики добился огромных успехов.

Основные понятия термодинамики

Стандартной энергией Гиббса называется энергия при стандартных условиях, то есть при комнатной температуре (25 ºC) и атмосферном давлении (0,1 МПа).

Для понимания основных принципов термодинамики следует также ввести понятия энтропии и энтальпии системы.

Под энтальпией следует понимать внутреннюю энергию системы, которая находится при данном давлении и в данном объеме. Обозначается эта величина латинской буквой H и равна U+PV, где U - внутренняя энергия системы, P - давление, V - объем системы.

Энтропия системы является физической величиной, которая характеризует меру беспорядка. Иными словами, энтропия описывает особенность расположения частиц, составляющих данную систему, то есть характеризует вероятность существования каждого состояния этой системы. Обозначается она обычно латинской буквой S.


Таким образом, энтальпия является энергетической характеристикой, а энтропия - геометрической. Отметим, что для понимания и описания протекающих термодинамических процессов, абсолютные значения энтропии и энтальпии не несут полезной информации, важны лишь величины их изменений, то есть ΔH и ΔS.

Термодинамические утверждения

Этот закон помогает понять, в каком направлении может произвольно протекать реакция, или же она будет находиться в равновесии. Следующие утверждения являются фундаментальными для термодинамики:

  • Второй закон термодинамики гласит, чтобы процесс в любой системе происходил произвольно, его энтропия должна увеличиваться, то есть ΔS​>0.
  • При постоянных температуре и давлении изменение энергии Гиббса системы определяется по формуле ΔG=ΔH−TΔS.
  • Если для какого-либо процесса ΔG
  • Направление произвольного протекания конкретной реакции может зависеть от температуры в системе.

Самопроизвольные процессы

В химии произвольно протекающими процессами называются те, которые происходят без внешнего подвода к ним энергии. Произвольность протекания говорит о вероятности такой возможности и никак не связано с кинетикой процесса. Так, он может протекать быстро, то есть иметь взрывной характер, но может протекать и очень медленно в течение тысяч и миллионов лет.


Классическим примером самопроизвольно протекающей реакции является превращение углерода в форме алмаза в углерод аллотропной модификации графита. Такая реакция идет настолько медленно, что за время своей жизни человек не заметит каких-либо изменений в исходном алмазе, поэтому и говорят, что алмазы - вечны, хотя если выждать достаточный промежуток времени, то можно увидеть, как блестящий камень становится черным, похожим на сажу графитом.

Выделение и поглощение энергии


Еще одним важным аспектом произвольно протекающих процессов является выделение или поглощение теплоты, в первом случае говорят об экзотермическом процессе, во втором случае - об эндотермическом, то есть речь идет о знаке изменения энтальпии ΔH. Заметим, что как экзотермические, так и эндотермические процессы могут протекать произвольно.

Ярким примером произвольно протекающего процесса является воспламенение топливной смеси в цилиндре двигателя внутреннего сгорания. В этой реакции выделяется большое количество тепловой энергии, которая преобразуется с КПД порядка 30% в механическую энергию, заставляя вращаться коленчатый вал. Последний передает крутящий момент через трансмиссию колесам автомобиля, и машина движется.

Примером эндотермической реакции, которая протекает самостоятельно с поглощением тепла, является растворение обычной поваренной соли NaCl в воде. В этой реакции ΔH = +3.87 кДж/моль > 0. Проверить этот факт можно, измерив температуру воды до растворения в ней соли и после ее растворения. Полученная разница конечной температуры и начальной окажется отрицательной.


Энергия Гиббса процесса

Если какой-либо процесс протекает в системе с постоянным давлением и температурой, тогда второй закон термодинамики можно переписать в следующем виде: G=H−TS. Величина G - свободная энергия Гиббса имеет размерность кДж/моль. Определение спонтанности протекания конкретной реакции зависит от знака изменения этой величины, то есть ΔG. В итоге второй закон термодинамики примет форму: ΔG​=ΔH​−TΔS. Возможны следующие случаи:

  • ΔG>0 - эндергоническая реакция, которая не может произвольно происходить в прямом направлении, но будет самостоятельно идти в обратном направлении с увеличением количества реагентов;
  • ΔG=0 - система находится в равновесии, и концентрации реагентов м продуктов остаются постоянными сколь угодно длительное время.

Анализ полученного уравнения

Введенное выражение для второго закона термодинамики позволяет определить, в каком случае процесс может протекать произвольно. Для этого необходимо проанализировать три величины: изменение энтальпии ΔH, изменение энтропии ΔS и температура T. Заметим, что температура выражается в абсолютных единицах по международной системе мер и весов, то есть в Кельвинах, поэтому она является всегда положительной величиной.

Направление протекания реакции не зависит от температуры если:

  • Реакция является экзотермической (ΔH 0). В таком случае процесс произвольно идет всегда в прямом направлении;
  • Реакция эндотермического характера (ΔH>0) и изменение ее энтропии отрицательное (ΔS

Если же знаки изменения величин ΔH и ΔS совпадают, тогда уже температура играет важную роль в возможности протекания такого процесса. Так, экзотермическая реакция будет идти произвольно при низких температурах, а экзотермическая реакция - при высоких.

Расчет таяния льда


Хорошим примером реакции, в которой знак энергии Гиббса зависит от температуры, является таяние льда. Для такого процесса ΔH = 6,01 кДж/моль, то есть реакция эндотермическая, ΔS = 22,0 Дж/моль*К, то есть процесс происходит с увеличением энтропии.

Вычислим для таяния льда температуру, при которой изменение энергии Гиббса будет равно нулю, то есть система будет находиться в равновесном состоянии. Из второго закона термодинамики получаем: T = ΔH/ΔS, подставляя значения указанных величин, вычисляем T = 6,01/0,022 = 273,18 K.

Если перевести температуру из Кельвинов в привычные градусы Цельсия, получим 0 ºC. То есть при температуре выше этого значение ΔG 0, и произвольно уже будет идти обратный процесс, то есть кристаллизация жидкой воды.

Методические указания и задания к контрольной работе по химии: Закономерности химических процессов.

I. Методические указания.

Общие положения.

Закономерности химических процессов являются предметом изучения двух разделов хи­мии: химической термодинамики и химической кинетики.

Химическая термодинамика изучает энергетические эффекты реакций, их направ­ление и пределы самопроизвольного протекания.

Объект изучения в химической термодинамике - термодинамическая система (в дальнейшем просто система) - это совокупность взаимодействующих веществ, мысленно или реально обособленная от окружающей среды.

Система может находиться в различных состояниях. Состояние системы определяется численными значениями термодинамических параметров: температуры, давления, концен­траций веществ и пр. При изменении значения хотя бы одного из термодинамических параметров, например, температуры происходит изменение состояния системы. Изменение состояния системы называется термодинамическим процессом или просто процессом.

Процессы могут протекать с различными скоростями. Изучением скоростей процессов и факторов, влияющих на них, занимается раздел химии, называемый химической кинетикой.

В зависимости от условий перехода системы из одного состояния в другое, в химической термодинамике различают несколько типов процессов, простейшими из которых являются изо­термический, протекающий при постоянной температуре (Т=соnst), изобарный, протекающий при постоянном давлении (р=соnst), изохорный, протекающий при постоянном объёме (V=соnst) и адиабатический, который осуществляется без обмена теплотой между системой и окружающей средой (q=соnst). Наиболее часто в химической термодинамике реакции рассматриваются как изобарно-изотермические (р=соnst, Т==соnst) или изохорно-изотермические (V=соnst, Т==соnst) процессы.

Чаще всего в химической термодинамике рассматриваются реакции, притекающие в стандартных условиях, т.е. при стандартной температуре и стандартном состоянии всех веществ. В качестве стандартной принята температура 298К. Стандартным состоянием вещества является его состояние при давлении 101,3 кПа. Если вещество находится в растворе, за стан­дартное принимается его состояние при концентрации 1 моль/л.

Предметом рассмотрения химической термодинамики являются процессы. Для ха­рактеристики процессов химическая термодинамика оперирует особыми величинами, называе­мыми функциями состояния: U - внутренняя энергия. Н - энтальпия, S - энтропия, G - энергия Гиббса и F - энергия Гельмгольца. Количественными характеристиками любого процесса являются изменения функций состояния, которые и определяются методами химической термодинамики: rU, rH, rS, rG, rF.

2. Термохимические расчёты.

(Задачи №№1-20)

Термохимический расчёт заключается в определении теплового эффекта реакции (теплоты реакции). Теплотой реакции, называется количество выделенной или поглощённой теплоты q. Если в ходе реакции теплота выделяется, такая реакция называется экзотермической, если теплота, поглощается, реакция называется эндотермической.

Численное значение теплоты реакции зависит от способа её проведения. В изохорном процессе, проводимом при V=соnst, теплота реакции qv = rU, в изобарном процессе при
р =
соnst тепловой эффект qp = rH. Таким образом, термохимический расчёт заключается в определении величины изменения или внутренней энергии, или энтальпии в ходе реакции. Поскольку подавляющее большинство реакций протекает в изобарных условиях (например, это все реакции в открытых сосудах, протекающие под атмосферным давлением), при проведении термохимических расчётов практически всегда производится расчёт rН. Если rН < 0, то реакция экзотермическая, если же rН > 0, то реакция эндотермическая.

Термохимические расчёты производятся, используя следствие из закона Гесса: тепловой эффект реакции равен сумме теплот (энтальпий) образования продуктов реакции за вычетом суммы теплот (энтальпий) образования реагентов.

Запишем в общем виде уравнение реакции: аА + bВ = сС + dD. Согласно следствию из закона Гесса теплота реакции определяется по формуле:

rН = (c rН обр, С + d rН обр, D) - (а rН обр,А + b rН обр,В) (2.1)

гдеrН - теплота реакции; rН обр - теплоты (энтальпии) образования, соответственно, продуктов реакции С и D и реагентов А и В; с, d, а, b - коэффициенты в уравнении реакции, называемые стехиометрическим и коэффициентами.

Базовыми величинами в формуле (2.1) являются теплоты (энтальпии) образования реагентов и продуктов.Теплотой (энтальпией) образования соединения называется тепловой эффект реакции, в ходе которой образуется 1 моль этого соединения из простых веществ, находящихся в термодинамически устойчивых фазах и модификациях 1) . Например, теплота образования воды в парообразном состоянии равна половине теплоты реакции, выражаемой уравнением: 2Н 2 (г) + О 2 (г) = 2Н 2 О (г). Размерность теплоты образования - кДж/моль.

В термохимических расчётах теплоты реакций, как правило, определяются для стандартных условий, для которых формула (2.1) приобретает вид:

rН ° 298 = (С rН ° 298,обр,С + d rН ° 298,обр,D) - (а rН ° 298,о6р,A + b rН ° 298, обр,В) (2.2)

где rН° 298 - стандартная теплота реакции в кДж (стандартность величины указывается верхним индексом "О") при температуре 298К. а rН° 298,обр. - стандартные теплоты (энтальпии) образования соединений также при температуре 298К. Значения rН°298,обр. определены для всех соединений и являются табличными данными. 2)

Пример 2.1. Расчёт стандартного теплового эффекта реакции, выраженной уравнением: СаСО 3 (т) =СаО(т) + СО 2 (г).

В соответствии со следствием из закона Гесса записываем:

rН 0 298 = (rН ° 298,обр,С аО + rН ° 298,обр.СО2) - rН° 298,обр,СаСО3

Подстановка в записанную формулу табличных значений стандартных теплот образования соединений приводит к следующему результату:

rН° 298 = ((-635,1) + (-393,51)) - (-1206) = 177,39 кДж.

Как видно, rН° 298 > 0, что указывает на эндотермический характер данной реакции.

В термохимии тепловые эффекты принято указывать в уравнениях реакций. Такие уравнения с обозначенным тепловым эффектом называются термохимическими.

Термохимическое уравнение рассматриваемой реакции записывается:

СаСО3(т) = СаО(т) + СО 2 (г); rН° 298 = 177,39 кДж.

Пример 2.2. Расчёт стандартной теплоты реакции выраженной уравнением :

4NH 3(г) + 5О 2 (г) = 4NO(г) + 6Н 2 О(г).

Согласно следствию из закона Гесса записываем 3) :

rН° 298 = (4rН° 298 ,обр. N О + 6rН ° 298,обр, H 2 O) - 4rН° 298 ,об, NH 3

Подставив табличные значения стандартных теплот образования соединений, представленных в формуле, получим:

rН° 298 = (4(90,37) + 6(-241,84)) - 4(-4б,19) = - 904.8 кДж.

Отрицательный знак теплоты реакции указывает на экзотермичность процесса.

Записываем термохимическое уравнение данной реакции

4NH3(г) + 5О 2 (г) = 4NO(г) + 6Н 2 О(г); rН° 298 = - 904,8 кДж

_______________________________________________________________________________

1) Состояния веществ в уравнениях реакций указываются с помощью буквенных индексов: (к) - кристаллическое, (т) - твёрдое, (ж) - жидкое, (г) - газообразное, (р) - растворённое.

2) По определению, rН° 298 ,обр. простых веществ равны нулю.

3) Н° 298 ,обр,О2 в формуле не фигурирует ввиду её равенства нулю.


Тепловой эффект в термохимическом уравнении относится к количествам веществ, обозначенным стехиометрическими коэффициентами. Так, в рассмотренном примере 2.2.запись rН° 298 = - 904,8 кДж означает, что такое количество теплоты выделяется, если взаимодействуют 4 моля NНз с 5 молями О 2 , в результате чего образуется 4 моля NO и 6 молей Н 2 О. Если же количества участников реакции будут иными, другим будет и значение теплового эффекта.

Пример 2.3. Расчёт теплоты реакции, рассмотренной в. примере 2.2., если:

а) в реакции участвуют 2 моля О 2 ;

Ь) в реакции участвуют 34г. NН з;

с) в реакции образуется 11,2л. NO.

Пусть х - неизвестное значение теплового эффекта, которое находится из следующих пропорций:

а) Решается пропорция: 2/5 = х (-904,8). Откуда х = 2(-904,8)/5 = - 361,92 кДж.

b) По массе 1 моль NH 3 равен 17г. (масса 1 моля в граммах численно равна сумме атомных масс). Следовательно, число молей NH 3 , участвующих в реакции, равно:

п = 34/17 = 2. Согласно этому составляем пропорцию: 2/4 = х/(-904,8).
Откуда х = 2(-904,8)/4
= - 452,4 кДж.

с) В соответствии с законом Авогадро, 1 моль любого газа при нормальных условиях занимает объём 22,4 литра. Поэтому число молей NO образующихся в реакции, равно:

п = 11,2/22,4 = 0,5 . Составляем пропорцию: 0,5/4 = х/(-904,8). Откуда х = 0,5(-904,8)/4 = -113,1 кДж.

Тепловые эффекты реакций конечно же зависят от условий их протекания, однако эта за­висимость выражена слабо. В интервале температур и давлений, имеющем практическое значение, изменение величины теплоты реакций, как правило, не превышает 5%. Поэтому в большинстве термохимических расчётов для любых условий величину теплоты реакции принимают равной стандартному тепловому эффекту.

Энергия Гиббса химической реакции.

(Задачи №№21-40)

Энергией Гиббса реакции называется изменение энергии Гиббса rG при протекании химической реакции. Так как энергия Гиббса системы С = Н - ТS, её изменение в процессе определяется по формуле:

rG = rН –ТrS. (3.1)

где Т - абсолютная температура в Кельвинах.

Энергия Гиббса химической реакции характеризует возможность её самопроизвольного протекания при постоянном давлении и температуре при р, Т=соnst). Если rG < 0, то реакция может протекать самопроизвольно, при rG > 0 самопроизвольное протекание реакции невозможно, если же rG = 0, система находится в состоянии равновесия.

Для расчёта энергии Гиббса реакции по формуле (3.1) отдельно определяются rН и rS. При этом в большинстве случаев используется слабая зависимость величин изменения энтальпии rН и энтропии rS от условий протекания реакции, т.е. пользуются приближениями:

= rН° 298 и rS = rS° 298 . (3.2)

Стандартную теплоту реакции rН° 298 определяют, используя следствие из закона Гесса по уравнению (2.2), а стандартную энтропию реакции аА + bВ = сС + dD рассчитывают по формуле:

rS° 298 = (сS° 298, С + dS° 298, D) - (aS° 298 , А + bS° 298,B) (3.3)

где rS° 298 - табличные значения абсолютных стандартных энтропии соединений в Дж/(мольК), а rS° 298 - стандартная энтропия реакции в Дж/К.

Пример 3.1. Расчёт энергии Гиббса реакции, выраженной уравнением

4NH 3 (г) + 5О 2 (г) = 4 NO(г) + 6Н 2 О(г) при давлении 202.6 кПа и температуре 500°С (773К).

Согласно условию, реакция протекает при практически реальных значениях давления и температуры, при которых допустимы приближения (3.2), т.е.:

rН 773 = rН ° 298 = -904.8 кДж = - 904800 Дж. (см. пример 2.2). а rS 773 = rS ° 298 . Значение стандартной энтропии реакции, рассчитанной по формуле (3.3), равно: rS° 298 =(4S° 298 , N 0 +6S° 298, H 20)- (4S° 298 , NH 3 + 5S° 298,О2)= (4 * 210,62 + 6 * 188,74) - (4 * 1O92,5 + 5 * 205,03) = 179,77Дж/К

После подстановки значений rН° 298 и rS° 298 в формулу (3.1) получаем:

rG 773 = rН773 - 773 rS 773 = Н ° 298 - 773 rS °298 =

= - 904800 – 773 * 179,77 = 1043762 Дж = - 1043,762 Кдж

Полученное отрицательное значение энергии Гиббса реакцииG 773 указывает на то, что данная реакция в рассматриваемых условиях может протекать самопроизвольно.

Если реакция протекает в стандартных условиях при температуре 298К, расчёт её энергии Гиббса (стандартной энергии Гиббса реакции) можно производить аналогично расчёту стандартной теплоты реакции по формуле, которая для реакции, выраженной уравнением аА + ЬВ = сС + dD, имеет вид:

rG ° 298 = (с rG ° 298,обр,С + drG ° 298.обр, D) – (аrG ° 298.обр A + b rG° 298 ,обр,в ) (3.4)

где rG ° 298.обр - стандартная энергия Гиббса образования соединения в кДж/моль (табличные значения) - энергия Гиббса реакции, в которой при температуре 298К образуется 1 моль данного соединения, находящегося в стандартном состоянии, из простых веществ, также находящихся в стандартном состоянии 4) , а rG ° 298 - стандартная энергия Гиббса реакции в кДж.

Пример 3.2. Расчёт стандартной энергии Гиббса реакции по уравнению:

4NH 3 + 5О 2 = 4 NO + 6Н 2 О

В соответствии с формулой (3. 4) записываем 5) :

rG° 298 = (4 rG° 298, NO + 6 rG° 298,.H2O) –4 rG° 29 8., NH3

После подстановки табличных значений r 298.обр получаем:

rG° 298 = (4(86, 69) + 6(-228, 76)) - 4 (-16, 64) = -184,56 кДж.

По полученному результату видно, что так же, как и в примере 3.1 , в стандартных условиях рассматриваемая реакция может протекать самопроизвольно.

По формуле (3.1) можно определить температурной диапазон самопроизвольного протекания реакции. Так как условием самопроизвольного протекания реакции является отрицательность
rG (rG < 0), определение области температур, в которой реакция может протекать самопроизвольно, сводится к решению относительно температуры неравенства (rН – ТrS) < 0.

Пример 3.3. Определение температурной области самопроизвольного протекания реакции СаО 3 (т) = СаО (т) + СО 2 (г).

Находим rН и rS:

rН = rН° 298 = 177,39 кДж = 177 390 Дж (см. пример 2.1)

rS = rS° 298 = (S° 298 . СаО + S° 298. СО 2 ) - S° 298. СО3 = (39.7+213.6) – 92.9=160.4 Дж/K

Подставляем значения rН и, rS в неравенство и решаем его относительно Т:

177390 Т * 160,4<0, или 177390 < Т * 160,4, или Т > 1106. Т.е. при всех температурах, больших 1 106К, будет обеспечиваться отрицательность rG и, следовательно, в данном температурном диапазоне будет возможным самопроизвольное протекание рассматриваемой реакции.

Химическая кинетика.

(Задачи №№41 - 60)

Как уже отмечалось, химическая кинетика - это раздел химии, изучающий скорости реакций и влияние на них различных факторов.

В гомогенном (однофазном) процессе реакция протекает во всём объёме системы и её скорость характеризуется изменением концентрации любого реагента, или любого продукта в единицу времени. Различают среднюю скоростьV ср = ±rС/rt, где rC - изменение молярной концентрации за период времени rt , и истинную скорость в момент времени t, представляющую собой производную от концентрации по времени: V = ±dС/dt. Скорость каждой конкретной реакции в отсутствие катализатора зависит от концентраций реагентов и от температуры . Скорость гетерогенных реакций, протекающих на межфазной поверхности раздела, зависит также от величины этой поверхности.

_______________________________________________________________________________________

4) Согласно определению, стандартная энергия Гиббса образования простых веществ равна нулю.

5) rG° 298, O 2 в выражении не фигурирует ввиду её равенства нулю.


Влияние концентраций реагентов на скорость реакций устанавливается законом дейст­вующих масс: при фиксированной температуре скорость реакции пропорциональна произве­дению концентраций реагентов в степенях, равных стехиометрическим коэффициентам. Для реакции аА + bВ = сС + dD математическое выражение закона действующих масс, называемое кинетическим уравнением реакции, записывается:

V = kС А а С B b (4.1)

где k - коэффициент пропорциональности, носящий название константы скорости, С A и С B - молярные концентрации реагентов, а и b - их стехиометрические коэффициенты. Сумма показателей степеней в кинетическом уравнении называется порядком реакции.

Пример 4.1. Кинетическое уравнение реакции 2Н 2 (г) + О 2 (г) = 2Н 2 О(г) записывается :

V = kС H 2 2 С О2 . Теоретический порядок данной реакции равен трём.

В кинетических уравнениях реакций концентрации веществ в конденсированном со­стоянии ввиду их неизменности не указываются. Эти постоянные концентрации в качестве составных частей входят в константу скорости.

Пример 4.2. Кинетическое уравнение гетерогенной реакции, протекающей согласно уравнению 2С(т) + О 2 (г) = 2СО(г), имеет вид: V = кС О2 - реакция первого порядка.

Согласно закону действующих масс, скорость реакции изменяется при изменении концентраций реагентов. *

Пример 4.3. Расчёт изменения скорости реакции 2Н2(г) + О 2 (г) = 2Н 2 О(г) при уменьшении концентрации водорода в 2 раза.

Согласно уравнению (4.1). начальная скорость реакции V 1 = kС H 2 2 /С О2 , а скорость реакции при концентрации водорода в 2 раза меньшей определяется соотношением:

V 2 = k(С H 2 /2) 2 С О2 - В итоге имеем V 2 /V 1 = 1/4, т.е. скорость реакции уменьшается в 4 раза.

В реакциях с участием газов изменение концентраций реагентов и, следовательно, изме­нение скорости легче всего осуществить изменением объёма системы путём изменения давления. Согласно уравнению Менделеева - Клапейрона, объём газа уменьшается, а его молярная концен­трация увеличивается во столько раз, во сколько раз увеличивается давление.

Пример 4.4. Расчёт изменения скорости реакции 2Н 2 (г) + О 2 (г) = 2Н 2 О(г) при увеличении давления в 2 раза.

Скорость реакции до увеличения давления V 1 = kС H 2 2 /С О2 - При увеличении давления в 2 раза объём системы уменьшается в 2 раза, в связи с чем концентрация каждого газа увеличивается в 2 раза и становится равной для водорода - 2 С Н2 , для кислорода - 2С О2 - В новых условиях скорость реакции будет выражаться кинетическим уравнением: V 2 = k(2С H 2) 2 2 С О2 - Отношение скоростей V 2 /V 1 = 8, т.е. в результате увеличения давления в 2 раза скорость реакции увеличивается в 8 раз.

Зависимость скорости химических реакций от температуры устанавливается правилом Вант - Гоффа: при увеличении температуры на каждые 10 градусов скорость большинства химических реакций увеличивается в 2 - 4 раза. Соответственно, при таком же уменьшении температуры скорость реакций уменьшается в такое же число раз. Математически правило Вант

Гоффа записывается:

V 2 = V 1 y (Т2 – T 1)/10 или k 2 = k 1 y (Т2 – T 1)/10 (4.2)

где V 2 и V i , k 2 , k 1 - соответственно, скорости и константы скоростей реакции при температурах Т 2 и Т 1 а у= 2 - 4 - температурный коэффициент скорости реакции.

Пример 4.5. Расчётшменения скорости реакции, температурный коэффициент которой равен 3, при уменьшении температуры на 30 градусов.

В соответствии с уравнением (4.2). отношение скоростей V 2 /V 1 = З -30/10 = 1/27. т.е. при уменьшении температуры на 30 градусов скорость реакции уменьшается в 27 раз.

Химическое равновесие.

(Задачи №№61-80)

Химическое равновесие устанавливается в обратимых реакциях - в реакциях, которые могут протекать как в прямом, так и в обратном направлении. Если реакция аА + bВ ó cC +dD) обратима, это означает, что реагенты А и В способны превращаться в продукты С и D (прямая реакция), а продукты С и D в свою очередь могут, реагируя между собой, вновь образовывать исходные вещества А и В (обратная реакция). Термодинамическим условием химического равновесия является неизменность энергии Гиббса реакции, т.е. rG = 0, а кинетическим условием равновесия - равенство скоростей прямой (V 1) и обратной (V 2) реакции: V 1 = V 2

Так как в состоянии химического равновесия и прямая, и обратная реакции протекают с одинаковыми скоростями, концентрации реагентов и продуктов во времени не изменяются. Эти не изменяющиеся во времени концентрации называются равновесными. Равновесные концентрации, в отличие от неравновесных, изменяющихся в ходе реакции, принято обозначать особым образом, а именно, формулой вещества, заключённой в квадратные скобки. Например, записи [Н 2 ], означают, что речь идёт о равновесных концентрациях водорода и аммиака.

При заданной температуре соотношение равновесных концентраций реагентов и продуктов есть величина постоянная и характерная для каждой реакции. Это соотношение количественно характеризуется величиной константы химического равновесия Кс, равной отношению произведения равновесных концентраций продуктов к произведению равновесных концентраций реагентов, возведённых в степени, равные их стехиометрическим коэффициентам. Для обратимой реакции аА+ЬВ ó cС+dD выражение Кс имеет вид:

Кс = ([С1 с [D] d)/([А] а [В] ь) (5.1)

Пример 5.1. Выражение константы химического равновесия обратимой гомогенной реакции N 2 (г)+ЗН 2 (г) ó 2NH 3 (г)

Согласно формуле (5.1) константа химического равновесия рассматриваемой реакции записывается: Кс =[ NНз] 2 / ([Н 2 ] 3).

Так же как в кинетических уравнениях реакций, в выражениях констант равновесия концентрации веществ в конденсированном состоянии, ввиду их постоянства, не записы­ваются.

Пример 5.2. Выражение константы химического равновесия гетерогенной обратимой реакции Fе 3 0 4 (т) + 4СО(г) ó ЗFе(т) + 4СО 2 (г).

Константа химического равновесия данной реакции с учётом вышеотмеченного записывается: Кс = [СО2] 4 /[СО] 4 .

Для реакций с участием газов константа химического равновесия может быть выражена не только через равновесные концентрации, но и через равновесные парциальные давления газов 6) . . В этом случае символ константы равновесия "К" индексируется не символом концентрации "с", а символом давления "р".

Пример 5.3. Константа химического равновесия гетерогенной обратимой реакции Fе 3 0 4 (т) + 4СО(г) ó ЗFе(т) + 4СО 2 (г), выраженная через равновесные парциальные давления газов в равновесной газовой смеси.

В результате замены равновесных концентраций равновесными парциальными давления­ми газов, получаем следующее выражение константы химического равновесия: Кр=Рсо 2 4 /Рсо 4 , где Рсо 2 и Рсо - соответственно, парциальные давления диоксида углерода СО 2 и.монооксида углерода СО.

Поскольку парциальное давление газа и его концентрация связаны между собой соотношением Р i =С i RТ, где Р i и С i - соответственно, парциальное давление и концентрация i-го газа, Кс и Кр, в свою очередь, связаны друг с другом простым соотношением:

Кр=Кс(RТ) r n (5.2)

где rn - разность между суммой стехиометрических коэффициентов продуктов реакции и суммой стехиометрических коэффициентов реагентов.

Пример 5.4. Взаимосвязь Кр и Кс обратимой реакции, выраженной уравнением:

N 2 (г)+ЗН 2 (г) ó 2NH 3 (г)

Записываем выражения Кр и Кс: Кр=Р NH 3 2 / Р N 2 Рн 2 3);

Так как rn = 2 - (1+3) = -2, то в соответствии с (5.2) Кр=Кс(RТ) -2 или иначе Кс=Кр(RТ) 2 .

________________________________________________________________________________

6) Парциальное давление газа в газовой смеси представляет собой часть от общего давления смеси, приходящуюся на долю данного газа.

Численное значение константы равновесия Кр легко определяются термодинамически по формуле:

rGº т = -2,З RТ lgКр (5.3)

где rGº т - стандартная энергия Гиббса реакции при температуре Т рассчитывается по формуле (3.1) или (3.4).

Формула (5.3) используется для расчёта констант равновесия реакций, протекающих с участием газов. При необходимости, используя соотношение (5.2), для такого рода реакций можно рассчитать значение Кс.

Пример 5.5. Расчёт константы равновесия реакции СаСОз(т) ó СаО(т) + СО2(г) при температуре 500°С (773К).

Так как один из участников обратимой реакции (СО 2) - газ, для расчёта константы равновесия используем формулу (5.3). Поскольку температура не является стандартной, rG 0 773 определяем по формуле (3. 1): rG 0 773 = Н° 773 – 773 rS 773 . Необходимые для определения G 0 773 значения Н є 773 и rS 773 возьмём из ранее рассмотренного примера (3.3), а именно: rН 0 773 = rН 0 298 =177390 Дж и S° 773 = rS° 298 =160,4 Дж/К. Соответственно этим значениям rG 0 773 = 177390 –773 773 160.4 =53401 Дж. Далее согласно формуле (5.3) получаем: lgКр = - rG° 773 /(2,ЗRТ) = -53401/(2,3 * 8,314 * 773) = -3,6.

Записываем выражение константы равновесия 7) и её численное значение: Кр=Рсо 2 =10 -3,6 . Столь малое значение Кр свидетельствует о том, что в рассматриваемых условиях прямая реакция практически не протекает (сопоставьте данный вывод с результатом расчёта в примере (3. 3).

Из рассмотренного примера (5.5) вытекает, что численное значение константы химиче­ского равновесия характеризует степень превращения реагентов в продукты: если Кр(Кс)>> 1, в равновесной системе преобладают продукты, те. обратимая реакция преимущественно протекает в прямом направлении и, наоборот, если Кр(Кс)<<1, более выраженной является обратная реакция и степень превращения реагентов в продукты невелика.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20